IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v104y2022icp158-184.html
   My bibliography  Save this article

A hierarchical reserving model for reported non-life insurance claims

Author

Listed:
  • Crevecoeur, Jonas
  • Robben, Jens
  • Antonio, Katrien

Abstract

Traditional non-life reserving models largely neglect the vast amount of information collected over the lifetime of a claim. This information includes covariates describing the policy, claim cause as well as the detailed history collected during a claim's development over time. We present the hierarchical reserving model as a modular framework for integrating a claim's history and claim-specific covariates into the development process. Hierarchical reserving models decompose the joint likelihood of the development process over time. Moreover, they are tailored to the portfolio at hand by adding a layer to the model for each of the events registered during the development of a claim (e.g. settlement, payment). Layers are modelled with statistical learning (e.g. generalized linear models) or machine learning methods (e.g. gradient boosting machines) and use claim-specific covariates. As a result of its flexibility, this framework incorporates many existing reserving models, ranging from aggregate models designed for run-off triangles to individual models using claim-specific covariates. This connection allows us to develop a data-driven strategy for choosing between aggregate and individual reserving; an important decision for reserving practitioners. We illustrate our method with a case study on a real insurance data set and deduce new insights in the covariates driving the development of claims. Moreover, we evaluate the method's performance on a large number of simulated portfolios representing several realistic development scenarios and demonstrate the flexibility and robustness of the hierarchical reserving model.

Suggested Citation

  • Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
  • Handle: RePEc:eee:insuma:v:104:y:2022:i:c:p:158-184
    DOI: 10.1016/j.insmatheco.2022.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722000257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    2. Larsen, Christian Roholte, 2007. "An Individual Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 113-132, May.
    3. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," LIDAM Reprints ISBA 2014024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Denuit, Michel & Trufin, Julien, 2018. "Collective loss reserving with two types of claims in motor third party liability insurance," LIDAM Reprints ISBA 2018002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2013. "Individual Loss Reserving With The Multivariate Skew Normal Framework," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 399-428, September.
    6. Mario V. Wuthrich & Michael Merz, 2015. "Stochastic Claims Reserving Manual: Advances in Dynamic Modeling," Swiss Finance Institute Research Paper Series 15-34, Swiss Finance Institute.
    7. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    8. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    9. Michel Denuit & Julien Trufin, 2017. "Beyond the Tweedie Reserving Model: The Collective Approach to Loss Development," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(4), pages 611-619, October.
    10. Mack, Thomas, 1999. "The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 361-366, November.
    11. Denuit, Michel & Trufin, Julien, 2017. "Beyond the Tweedie Reserving Model: The Collective Approach to Loss Development," LIDAM Reprints ISBA 2017038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Lopez, Olivier & Milhaud, Xavier & Thérond, Pierre-E., 2019. "A Tree-Based Algorithm Adapted To Microlevel Reserving And Long Development Claims – Erratum," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 919-919, September.
    13. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    14. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01141228, HAL.
    15. Els Godecharle & Katrien Antonio, 2015. "Reserving by Conditioning on Markers of Individual Claims: A Case Study Using Historical Simulation," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(4), pages 273-288, October.
    16. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    17. Lopez, Olivier & Milhaud, Xavier & Thérond, Pierre-E., 2019. "A Tree-Based Algorithm Adapted To Microlevel Reserving And Long Development Claims," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 741-762, September.
    18. Mario V. Wüthrich, 2018. "Machine learning in individual claims reserving," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(6), pages 465-480, July.
    19. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    2. Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2023. "Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method," Papers 2307.10808, arXiv.org, revised Jun 2024.
    3. Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.
    4. Calcetero Vanegas, Sebastián & Badescu, Andrei L. & Lin, X. Sheldon, 2024. "Effective experience rating for large insurance portfolios via surrogate modeling," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 25-43.
    5. Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2022. "Effective experience rating for large insurance portfolios via surrogate modeling," Papers 2211.06568, arXiv.org, revised Jun 2024.
    6. Oliver Lunding Sandqvist, 2023. "A multistate approach to disability insurance reserving with information delays," Papers 2312.14324, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    2. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    3. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    4. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    5. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    6. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    7. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    8. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    9. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    10. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    11. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    12. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    13. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    14. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    15. Crevecoeur, Jonas & Antonio, Katrien & Desmedt, Stijn & Masquelein, Alexandre, 2023. "Bridging the gap between pricing and reserving with an occurrence and development model for non-life insurance claims," ASTIN Bulletin, Cambridge University Press, vol. 53(2), pages 185-212, May.
    16. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    17. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    18. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    19. Denuit, Michel & Trufin, Julien, 2016. "Collective Loss Reserving with Two Types of Claims in Motor Third Party Liability Insurance," LIDAM Discussion Papers ISBA 2016029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.

    More about this item

    Keywords

    Individual claims reserving; Covariate shift; Model and variable selection; Moving window evaluation; Simulation machine;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:104:y:2022:i:c:p:158-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.