IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.11991.html
   My bibliography  Save this paper

Estimating Treatment Effects with Observed Confounders and Mediators

Author

Listed:
  • Shantanu Gupta
  • Zachary C. Lipton
  • David Childers

Abstract

Given a causal graph, the do-calculus can express treatment effects as functionals of the observational joint distribution that can be estimated empirically. Sometimes the do-calculus identifies multiple valid formulae, prompting us to compare the statistical properties of the corresponding estimators. For example, the backdoor formula applies when all confounders are observed and the frontdoor formula applies when an observed mediator transmits the causal effect. In this paper, we investigate the over-identified scenario where both confounders and mediators are observed, rendering both estimators valid. Addressing the linear Gaussian causal model, we demonstrate that either estimator can dominate the other by an unbounded constant factor. Next, we derive an optimal estimator, which leverages all observed variables, and bound its finite-sample variance. We show that it strictly outperforms the backdoor and frontdoor estimators and that this improvement can be unbounded. We also present a procedure for combining two datasets, one with observed confounders and another with observed mediators. Finally, we evaluate our methods on both simulated data and the IHDP and JTPA datasets.

Suggested Citation

  • Shantanu Gupta & Zachary C. Lipton & David Childers, 2020. "Estimating Treatment Effects with Observed Confounders and Mediators," Papers 2003.11991, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:2003.11991
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.11991
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Lauren Cohen & Christopher J. Malloy, 2014. "Friends in High Places," American Economic Journal: Economic Policy, American Economic Association, vol. 6(3), pages 63-91, August.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    4. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    5. Paul Hunermund & Elias Bareinboim, 2019. "Causal Inference and Data Fusion in Econometrics," Papers 1912.09104, arXiv.org, revised Mar 2023.
    6. Adam N. Glynn & Konstantin Kashin, 2017. "Front‐Door Difference‐in‐Differences Estimators," American Journal of Political Science, John Wiley & Sons, vol. 61(4), pages 989-1002, October.
    7. Alex Chinco & Christopher Mayer, 2016. "Misinformed Speculators and Mispricing in the Housing Market," The Review of Financial Studies, Society for Financial Studies, vol. 29(2), pages 486-522.
    8. Isabel R. Fulcher & Ilya Shpitser & Stella Marealle & Eric J. Tchetgen Tchetgen, 2020. "Robust inference on population indirect causal effects: the generalized front door criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 199-214, February.
    9. Adam N. Glynn & Konstantin Kashin, 2018. "Front-Door Versus Back-Door Adjustment With Unmeasured Confounding: Bias Formulas for Front-Door and Hybrid Adjustments With Application to a Job Training Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1040-1049, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
    4. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    5. Heckman, James J. & Lochner, Lance J. & Todd, Petra E., 2006. "Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond," Handbook of the Economics of Education, in: Erik Hanushek & F. Welch (ed.), Handbook of the Economics of Education, edition 1, volume 1, chapter 7, pages 307-458, Elsevier.
    6. Gharehgozli, Orkideh, 2021. "An empirical comparison between a regression framework and the Synthetic Control Method," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 70-81.
    7. Lewbel, Arthur & Choi, Jin Young & Zhou, Zhuzhu, 2023. "Over-identified Doubly Robust identification and estimation," Journal of Econometrics, Elsevier, vol. 235(1), pages 25-42.
    8. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).
    9. Xiaolin Sun, 2022. "Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach," Papers 2210.15829, arXiv.org, revised Oct 2024.
    10. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    11. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Eppinger, Peter S., 2019. "Service offshoring and firm employment," Journal of International Economics, Elsevier, vol. 117(C), pages 209-228.
    13. John Engberg & Dennis Epple & Jason Imbrogno & Holger Sieg & Ron Zimmer, 2014. "Evaluating Education Programs That Have Lotteried Admission and Selective Attrition," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 27-63.
    14. Paul Hunermund & Elias Bareinboim, 2019. "Causal Inference and Data Fusion in Econometrics," Papers 1912.09104, arXiv.org, revised Mar 2023.
    15. Máximo Torero, 2002. "Peruvian Privatization: Impacts On Firm Performance," Research Department Publications 3169, Inter-American Development Bank, Research Department.
    16. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    17. Moscelli, Giuseppe & Gravelle, Hugh & Siciliani, Luigi & Gutacker, Nils, 2018. "The effect of hospital ownership on quality of care: Evidence from England," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 322-344.
    18. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    19. John Engberg & Dennis Epple & Jason Imbrogno & Holger Sieg & Ron Zimmer, 2009. "Estimation of Causal Effects in Experiments with Multiple Sources of Noncompliance," NBER Working Papers 14842, National Bureau of Economic Research, Inc.
    20. Chunrong Ai & Lukang Huang & Zheng Zhang, 2018. "A Simple and Efficient Estimation of the Average Treatment Effect in the Presence of Unmeasured Confounders," Papers 1807.05678, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.11991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.