IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v86y2024i4p951-993.html
   My bibliography  Save this article

The Paper of How: Estimating Treatment Effects Using the Front‐Door Criterion

Author

Listed:
  • Marc F. Bellemare
  • Jeffrey R. Bloem
  • Noah Wexler

Abstract

We illustrate the use of Pearl's (1995) front‐door criterion with observational data with an application in which the assumptions for point identification hold. For identification, the front‐door criterion leverages exogenous mediator variables on the causal path. After a preliminary discussion of the identification assumptions behind and the estimation framework used for the front‐door criterion, we present an empirical application. In our application, we look at the effect of deciding to share an Uber or Lyft ride on tipping by exploiting the algorithm‐driven exogenous variation in whether one actually shares a ride conditional on authorizing sharing, the full fare paid, and origin–destination fixed effects interacted with two‐hour interval fixed effects. We find that most of the observed negative relationship between choosing to share a ride and tipping is driven by customer selection into sharing rather than by sharing itself. In the Appendix, we explore the consequences of violating the identification assumptions for the front‐door criterion.

Suggested Citation

  • Marc F. Bellemare & Jeffrey R. Bloem & Noah Wexler, 2024. "The Paper of How: Estimating Treatment Effects Using the Front‐Door Criterion," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 951-993, August.
  • Handle: RePEc:bla:obuest:v:86:y:2024:i:4:p:951-993
    DOI: 10.1111/obes.12598
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12598
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    2. David Card & Stefano DellaVigna & Patricia Funk & Nagore Iriberri, 2020. "Are Referees and Editors in Economics Gender Neutral?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(1), pages 269-327.
    3. Karim Chalak & Halbert White, 2011. "Viewpoint: An extended class of instrumental variables for the estimation of causal effects," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 44(1), pages 1-51, February.
    4. Bharat Chandar & Uri Gneezy & John List & Ian Muir, 2019. "The Drivers of Social Preferences: Evidence from a Nationwide Tipping Field Experiment," Natural Field Experiments 00680, The Field Experiments Website.
    5. Acharya, Avidit & Blackwell, Matthew & Sen, Maya, 2016. "Explaining Causal Findings Without Bias: Detecting and Assessing Direct Effects," American Political Science Review, Cambridge University Press, vol. 110(3), pages 512-529, August.
    6. Guido W. Imbens, 2015. "Matching Methods in Practice: Three Examples," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 373-419.
    7. Patrick Kline & Christopher R. Walters, 2016. "Evaluating Public Programs with Close Substitutes: The Case of HeadStart," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1795-1848.
    8. Heckman, James & Pinto, Rodrigo, 2015. "Causal Analysis After Haavelmo," Econometric Theory, Cambridge University Press, vol. 31(1), pages 115-151, February.
    9. Rachid Laajaj & Karen Macours & Cargele Masso & Moses Thuita & Bernard Vanlauwe, 2020. "Reconciling yield gains in agronomic trials with returns under African smallholder conditions," PSE-Ecole d'économie de Paris (Postprint) halshs-02973685, HAL.
    10. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    11. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    12. Paul Hunermund & Elias Bareinboim, 2019. "Causal Inference and Data Fusion in Econometrics," Papers 1912.09104, arXiv.org, revised Mar 2023.
    13. Imai, Kosuke & Keele, Luke & Tingley, Dustin & Yamamoto, Teppei, 2011. "Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies," American Political Science Review, Cambridge University Press, vol. 105(4), pages 765-789, November.
    14. Ofer H. Azar, 2020. "The Economics of Tipping," Journal of Economic Perspectives, American Economic Association, vol. 34(2), pages 215-236, Spring.
    15. Adam N. Glynn & Konstantin Kashin, 2018. "Front-Door Versus Back-Door Adjustment With Unmeasured Confounding: Bias Formulas for Front-Door and Hybrid Adjustments With Application to a Job Training Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1040-1049, July.
    16. John Mullahy & Edward C. Norton, 2024. "Why Transform Y? The Pitfalls of Transformed Regressions with a Mass at Zero," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(2), pages 417-447, April.
    17. Marc F. Bellemare & Casey J. Wichman, 2020. "Elasticities and the Inverse Hyperbolic Sine Transformation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 50-61, February.
    18. Isabel R. Fulcher & Ilya Shpitser & Stella Marealle & Eric J. Tchetgen Tchetgen, 2020. "Robust inference on population indirect causal effects: the generalized front door criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 199-214, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellemare, Marc F. & Lee, Yu Na & Novak, Lindsey, 2021. "Contract farming as partial insurance," World Development, Elsevier, vol. 140(C).
    2. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    3. Jiawei Fu, 2024. "Extracting Mechanisms from Heterogeneous Effects: An Identification Strategy for Mediation Analysis," Papers 2403.04131, arXiv.org, revised Oct 2024.
    4. Leonardo Marinho, 2022. "Causal Impulse Responses for Time Series," Working Papers Series 570, Central Bank of Brazil, Research Department.
    5. Shantanu Gupta & Zachary C. Lipton & David Childers, 2020. "Estimating Treatment Effects with Observed Confounders and Mediators," Papers 2003.11991, arXiv.org, revised Jun 2021.
    6. Michael Grätz, 2022. "When less conditioning provides better estimates: overcontrol and endogenous selection biases in research on intergenerational mobility," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3769-3793, October.
    7. Ali Tafti & Galit Shmueli, 2020. "Beyond Overall Treatment Effects: Leveraging Covariates in Randomized Experiments Guided by Causal Structure," Information Systems Research, INFORMS, vol. 31(4), pages 1183-1199, December.
    8. Delius, Antonia & Sterck, Olivier, 2024. "Cash transfers and micro-enterprise performance: Theory and quasi-experimental evidence from Kenya," Journal of Development Economics, Elsevier, vol. 167(C).
    9. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    10. Kofi A. A-O. Agyei-Henaku & Charlotte Badu-Prah & Francis Srofenyoh & Ferguson K. Gidiglo & Akua Agyeiwaa-Afrane & Justice G. Djokoto, 2024. "Citations of Publications on Foreign Direct Investments into Agribusiness: Nature, Variability and Drivers," SAGE Open, , vol. 14(1), pages 21582440241, February.
    11. Alloush, Mo & Bloem, Jeffrey R., 2022. "Neighborhood violence, poverty, and psychological well-being," Journal of Development Economics, Elsevier, vol. 154(C).
    12. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    13. Nocito, Samuel & Sartarelli, Marcello & Sobbrio, Francesco, 2023. "A beam of light: Media, tourism and economic development," Journal of Urban Economics, Elsevier, vol. 137(C).
    14. Sanford C. Gordon & Hannah K. Simpson, 2020. "Causes, theories, and the past in political science," Public Choice, Springer, vol. 185(3), pages 315-333, December.
    15. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    16. Wen, Le & Paudel, Krishna P. & He, Qinying, 2023. "Temporary migration and land renting behavior," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1372-1391.
    17. Jorge Luis García & James J. Heckman & Duncan Ermini Leaf & María José Prados, 2020. "Quantifying the Life-Cycle Benefits of an Influential Early-Childhood Program," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2502-2541.
    18. García, Jorge Luis & Heckman, James J. & Ziff, Anna L., 2018. "Gender differences in the benefits of an influential early childhood program," European Economic Review, Elsevier, vol. 109(C), pages 9-22.
    19. Wei, Yao & Anselmi, Laura & Munford, Luke & Sutton, Matt, 2023. "The impact of devolution on experienced health and well-being," Social Science & Medicine, Elsevier, vol. 333(C).
    20. Jorge Luis García & James J. Heckman & Duncan Ermini Leaf & María José Prados, 2017. "Quantifying the Life-cycle Benefits of a Prototypical Early Childhood Program," NBER Working Papers 23479, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:86:y:2024:i:4:p:951-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.