IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1040-1049.html
   My bibliography  Save this article

Front-Door Versus Back-Door Adjustment With Unmeasured Confounding: Bias Formulas for Front-Door and Hybrid Adjustments With Application to a Job Training Program

Author

Listed:
  • Adam N. Glynn
  • Konstantin Kashin

Abstract

We demonstrate that the front-door adjustment can be a useful alternative to standard covariate adjustments (i.e., back-door adjustments), even when the assumptions required for the front-door approach do not hold. We do this by providing asymptotic bias formulas for the front-door approach that can be compared directly to bias formulas for the back-door approach. In some cases, this allows the tightening of bounds on treatment effects. We also show that under one-sided noncompliance, the front-door approach does not rely on the use of control units. This finding has implications for the design of studies when treatment cannot be withheld from individuals (perhaps for ethical reasons). We illustrate these points with an application to the National Job Training Partnership Act Study.

Suggested Citation

  • Adam N. Glynn & Konstantin Kashin, 2018. "Front-Door Versus Back-Door Adjustment With Unmeasured Confounding: Bias Formulas for Front-Door and Hybrid Adjustments With Application to a Job Training Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1040-1049, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1040-1049
    DOI: 10.1080/01621459.2017.1398657
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1398657
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1398657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romy Müller & Franziska Kessler & David W. Humphrey & Julian Rahm, 2021. "Data in Context: How Digital Transformation Can Support Human Reasoning in Cyber-Physical Production Systems," Future Internet, MDPI, vol. 13(6), pages 1-36, June.
    2. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    3. Ali Tafti & Galit Shmueli, 2020. "Beyond Overall Treatment Effects: Leveraging Covariates in Randomized Experiments Guided by Causal Structure," Information Systems Research, INFORMS, vol. 31(4), pages 1183-1199, December.
    4. Shantanu Gupta & Zachary C. Lipton & David Childers, 2020. "Estimating Treatment Effects with Observed Confounders and Mediators," Papers 2003.11991, arXiv.org, revised Jun 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1040-1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.