What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Strittmatter, Anthony, 2019. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," GLO Discussion Paper Series 336, Global Labor Organization (GLO).
- Strittmatter, Anthony, 2019. "What is the Value Added by using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203499, Verein für Socialpolitik / German Economic Association.
References listed on IDEAS
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018.
"The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages,"
Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Ye Luo, 2015. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Papers 1512.05635, arXiv.org, revised May 2018.
- Victor Chernozhukov & Ivan Fernandez-Val & Ye Luo, 2015. "The sorted effects method: discovering heterogeneous effects beyond their averages," CeMMAP working papers 74/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Ye Luo, 2015. "The sorted effects method: discovering heterogeneous effects beyond their averages," CeMMAP working papers CWP74/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017.
"Doubly robust uniform confidence band for the conditional average treatment effect function,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
- Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers CWP03/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lee, Sokbae & Okui, Ryo & Whang, Yoon-Jae, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," LSE Research Online Documents on Economics 86852, London School of Economics and Political Science, LSE Library.
- Sokbae Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly Robust Uniform Confidence Band For The Conditional Average Treatment Effect Function," KIER Working Papers 931, Kyoto University, Institute of Economic Research.
- Sokbae Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly Robust Uniform Confidence Band for the Conditional Average Treatment Effect Function," Papers 1601.02801, arXiv.org, revised Oct 2016.
- Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers 03/16, Institute for Fiscal Studies.
- Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006.
"What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments,"
American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
- Marianne Bitler & Jonah Gelbach & Hilary Hoynes, 2003. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," NBER Working Papers 10121, National Bureau of Economic Research, Inc.
- Marianne P. Bitler & Jonah Gelbach & Hilary Hoynes, 2004. "What Mean Impacts Miss Distributional Effects of Welfare Reform Experiments," Working Papers WR-109-NICHD/NIA, RAND Corporation.
- Hilary W. Hoynes & Marianne P Bitler & Jonah Gelbach, 2005. "What Mean Impacts Miss:Distributional Effects of Welfare Reform Experiments," Working Papers 36, University of California, Davis, Department of Economics.
- Bitler, Marianne P. & Gelbach, Jonah B. & Hoynes, Hilary W., 2005. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," IZA Discussion Papers 1728, Institute of Labor Economics (IZA).
- Patrick Kline & Melissa Tartari, 2016.
"Bounding the Labor Supply Responses to a Randomized Welfare Experiment: A Revealed Preference Approach,"
American Economic Review, American Economic Association, vol. 106(4), pages 972-1014, April.
- Patrick Kline & Melissa Tartari, 2015. "Bounding the Labor Supply Responses to a Randomized Welfare Experiment: A Revealed Preference Approach," NBER Working Papers 20838, National Bureau of Economic Research, Inc.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Sergio Firpo, 2007.
"Efficient Semiparametric Estimation of Quantile Treatment Effects,"
Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
- Sergio Firpo, 2004. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometric Society 2004 North American Summer Meetings 605, Econometric Society.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iv'an Fern'andez-Val, 2017.
"Fisher-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India,"
Papers
1712.04802, arXiv.org, revised Oct 2023.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2023. "Fischer-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," Working Papers hal-04238425, HAL.
- Alberto Abadie & Matthew M. Chingos & Martin R. West, 2018.
"Endogenous Stratification in Randomized Experiments,"
The Review of Economics and Statistics, MIT Press, vol. 100(4), pages 567-580, October.
- Alberto Abadie & Matthew M. Chingos & Martin R. West, 2013. "Endogenous Stratification in Randomized Experiments," NBER Working Papers 19742, National Bureau of Economic Research, Inc.
- Michael Lechner & Anthony Strittmatter, 2019.
"Practical procedures to deal with common support problems in matching estimation,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
- Lechner, Michael & Strittmatter, Anthony, 2014. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," Economics Working Paper Series 1410, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Strittmatter, Anthony, 2017. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," IZA Discussion Papers 10532, Institute of Labor Economics (IZA).
- Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
- James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
- Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022.
"Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach,"
Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," IZA Discussion Papers 10961, Institute of Labor Economics (IZA).
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
- Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
- Matt Taddy & Matt Gardner & Liyun Chen & David Draper, 2016. "A Nonparametric Bayesian Analysis of Heterogenous Treatment Effects in Digital Experimentation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 661-672, October.
- Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
- Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
- Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
- repec:ags:aaea22:335586 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Buhl-Wiggers, Julie & Kerwin, Jason T. & Muñoz-Morales, Juan & Smith, Jeffrey & Thornton, Rebecca, 2024.
"Some children left behind: Variation in the effects of an educational intervention,"
Journal of Econometrics, Elsevier, vol. 243(1).
- Buhl-Wiggers, Julie & Kerwin, Jason & Muñoz-Morales, Juan S. & Smith, Jeffrey A. & Thornton, Rebecca L., 2020. "Some Children Left Behind: Variation in the Effects of an Educational Intervention," IZA Discussion Papers 13598, Institute of Labor Economics (IZA).
- Julie Buhl-Wiggers & Jason Kerwin & Juan Muñoz-Morales & Jeffrey Smith & Rebecca Thornton, 2022. "Some children left behind: Variation in the effects of an educational intervention," Post-Print hal-03972201, HAL.
- Julie Buhl-Wiggers & Jason T. Kerwin & Juan S. Muñoz-Morales & Jeffrey A. Smith & Rebecca Thornton, 2021. "Some Children Left Behind: Variation in the Effects of an Educational Intervention," NBER Working Papers 29459, National Bureau of Economic Research, Inc.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021.
"Active labour market policies for the long-term unemployed: New evidence from causal machine learning,"
Economics Working Paper Series
2108, University of St. Gallen, School of Economics and Political Science.
- Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org, revised May 2023.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active Labour Market Policies for the Long-Term Unemployed: New Evidence from Causal Machine Learning," IZA Discussion Papers 14486, Institute of Labor Economics (IZA).
- Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
- Jeffrey Smith, 2022.
"Treatment Effect Heterogeneity,"
Evaluation Review, , vol. 46(5), pages 652-677, October.
- Smith, Jeffrey A., 2022. "Treatment Effect Heterogeneity," IZA Discussion Papers 15151, Institute of Labor Economics (IZA).
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Hugo Bodory & Martin Huber & Michael Lechner, 2024.
"The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
- Hugo Bodory & Martin Huber & Michael Lechner, 2022. "The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates," Papers 2212.07379, arXiv.org.
- Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
- Callaway, Brantly, 2021.
"Bounds on distributional treatment effect parameters using panel data with an application on job displacement,"
Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
- Brantly Callaway, 2020. "Bounds on Distributional Treatment Effect Parameters using Panel Data with an Application on Job Displacement," Papers 2008.08117, arXiv.org.
- Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022.
"Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach,"
Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," IZA Discussion Papers 10961, Institute of Labor Economics (IZA).
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Sokbae Lee & Yoon-Jae Whang, 2009.
"Nonparametric Tests of Conditional Treatment Effects,"
Cowles Foundation Discussion Papers
1740, Cowles Foundation for Research in Economics, Yale University.
- Sokbae (Simon) Lee & Yoon-Jae Whang, 2009. "Nonparametric tests of conditional treatment effects," CeMMAP working papers CWP36/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Marianne Bertrand & Bruno Crépon & Alicia Marguerie & Patrick Premand, 2021.
"Do Workfare Programs Live Up to Their Promises? Experimental Evidence from Cote D’Ivoire,"
NBER Working Papers
28664, National Bureau of Economic Research, Inc.
- Bertrand,Marianne & Crepon,Bruno Jacques Jean Philippe & Marguerie,Alicia Charlene & Premand,Patrick, 2021. "Do Workfare Programs Live Up to Their Promises ? Experimental Evidence from Côte d’Ivoire," Policy Research Working Paper Series 9611, The World Bank.
- Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Jan 2025.
More about this item
JEL classification:
- H75 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Government: Health, Education, and Welfare
- I38 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Government Programs; Provision and Effects of Welfare Programs
- J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply
- J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-01-21 (Big Data)
- NEP-CMP-2019-01-21 (Computational Economics)
- NEP-EXP-2019-01-21 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.06533. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.