A Nonparametric Bayesian Analysis of Heterogenous Treatment Effects in Digital Experimentation
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2016.1172013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chamberlain, Gary & Imbens, Guido W, 2003.
"Nonparametric Applications of Bayesian Inference,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 12-18, January.
- Imbens, Guido & Chamberlain, Gary, 1996. "Nonparametric Applications of Bayesian Inference," Scholarly Articles 3221493, Harvard University Department of Economics.
- Gary Chamberlain & Guido W. Imbens, 1996. "Nonparametric Applications of Bayesian Inference," NBER Technical Working Papers 0200, National Bureau of Economic Research, Inc.
- Gary Chamberlain & Guido W. Imbens, 1996. "Nonparametric Applications of Bayesian Inference," Harvard Institute of Economic Research Working Papers 1772, Harvard - Institute of Economic Research.
- Richard Berk & Emil Pitkin & Lawrence Brown & Andreas Buja & Edward George & Linda Zhao, 2013. "Covariance Adjustments for the Analysis of Randomized Field Experiments," Evaluation Review, , vol. 37(3-4), pages 170-196, June.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
- Dale J. Poirier, 2011. "Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 457-468, August.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- Guihua Wang & Jun Li & Wallace J. Hopp, 2022. "An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies," Management Science, INFORMS, vol. 68(5), pages 3399-3418, May.
- Anthony Strittmatter, 2018.
"What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?,"
Papers
1812.06533, arXiv.org, revised Dec 2021.
- Strittmatter, Anthony, 2019. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," GLO Discussion Paper Series 336, Global Labor Organization (GLO).
- Strittmatter, Anthony, 2019. "What is the Value Added by using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203499, Verein für Socialpolitik / German Economic Association.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Lai Xinglin, 2021. "Modelling hetegeneous treatment effects by quantitle local polynomial decision tree and forest," Papers 2111.15320, arXiv.org, revised Mar 2022.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Jaeho Kim & Le Wang, 2019. "Hidden group patterns in democracy developments: Bayesian inference for grouped heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 1016-1028, September.
- Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
- Maria Nareklishvili & Nicholas Polson & Vadim Sokolov, 2022. "Feature Selection for Personalized Policy Analysis," Papers 2301.00251, arXiv.org, revised Jul 2023.
- Shi, Chengchun & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2021. "An online sequential test for qualitative treatment effects," LSE Research Online Documents on Economics 112521, London School of Economics and Political Science, LSE Library.
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Seungwoo Chin & Matthew E. Kahn & Hyungsik Roger Moon, 2020.
"Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 48(3), pages 886-914, September.
- Seungwoo Chin & Matthew E. Kahn & Hyungsik Roger Moon, 2017. "Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach," NBER Working Papers 23326, National Bureau of Economic Research, Inc.
- Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
- Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
- Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
- Jean-Pierre Dubé & Sanjog Misra, 2017. "Personalized Pricing and Consumer Welfare," NBER Working Papers 23775, National Bureau of Economic Research, Inc.
- Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
- Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
- Miller, Steve, 2020. "Causal forest estimation of heterogeneous and time-varying environmental policy effects," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
- Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
- Qingyuan Zhao & Dylan S. Small & Ashkan Ertefaie, 2022. "Selective inference for effect modification via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 382-413, April.
- Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
- Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tenglong Li & Kenneth A. Frank & Mingming Chen, 2024. "A Conceptual Framework for Quantifying the Robustness of a Regression-Based Causal Inference in Observational Study," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
- Tang, Chuan & Heintzelman, Martin D. & Holsen, Thomas M., 2018. "Mercury pollution, information, and property values," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 418-432.
- Tenglong Li & Kenneth A. Frank, 2020. "The probability of a robust inference for internal validity and its applications in regression models," Papers 2005.12784, arXiv.org.
- Hang Miao & Kui Zhao & Zhun Wang & Linbo Jiang & Quanhui Jia & Yanming Fang & Quan Yu, 2020. "Intelligent Credit Limit Management in Consumer Loans Based on Causal Inference," Papers 2007.05188, arXiv.org.
- Peter Z. Schochet, "undated". "Statistical Theory for the RCT-YES Software: Design-Based Causal Inference for RCTs," Mathematica Policy Research Reports a0c005c003c242308a92c02dc, Mathematica Policy Research.
- Tenglong Li & Ken Frank, 2022. "The probability of a robust inference for internal validity," Sociological Methods & Research, , vol. 51(4), pages 1947-1968, November.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.
- Tenglong Li & Kenneth A. Frank, 2019. "On the probability of a causal inference is robust for internal validity," Papers 1906.08726, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
- Shanike J. Smart & Solomon W. Polachek, 2024.
"COVID-19 vaccine and risk-taking,"
Journal of Risk and Uncertainty, Springer, vol. 68(1), pages 25-49, February.
- Smart, Shanike J. & Polachek, Solomon, 2024. "COVID-19 Vaccine and Risk-Taking," IZA Discussion Papers 16707, Institute of Labor Economics (IZA).
- Florian Gunsilius & Yuliang Xu, 2021. "Matching for causal effects via multimarginal unbalanced optimal transport," Papers 2112.04398, arXiv.org, revised Jul 2022.
- Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023.
"Offline Multi-Action Policy Learning: Generalization and Optimization,"
Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
- Zhou, Zhengyuan & Athey, Susan & Wager, Stefan, 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization," Research Papers 3734, Stanford University, Graduate School of Business.
- Zhengyuan Zhou & Susan Athey & Stefan Wager, 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization," Papers 1810.04778, arXiv.org, revised Nov 2018.
- Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020.
"Wage premium of Communist Party membership: Evidence from China,"
Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
- Wang, Hongjian & Nikolov, Plamen & Acker, Kevin, 2019. "The Wage Premium of Communist Party Membership: Evidence from China," IZA Discussion Papers 12874, Institute of Labor Economics (IZA).
- Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "The Wage Premium of Communist Party Membership: Evidence from China," Papers 2007.13549, arXiv.org.
- Daniel Burkhard & Christian P. R. Schmid & Kaspar Wüthrich, 2019.
"Financial incentives and physician prescription behavior: Evidence from dispensing regulations,"
Health Economics, John Wiley & Sons, Ltd., vol. 28(9), pages 1114-1129, September.
- Daniel Burkhard & Christian Schmid & Kaspar W thrich, 2015. "Financial incentives and physician prescription behavior: Evidence from dispensing regulations," Diskussionsschriften dp1511, Universitaet Bern, Departement Volkswirtschaft.
- Burkhard, D.; & Schmid, C.P.R.; & Wüthrich, K.;, 2018. "Financial incentives and physician prescription behavior.Evidence from dispensing regulations," Health, Econometrics and Data Group (HEDG) Working Papers 18/17, HEDG, c/o Department of Economics, University of York.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Özler, Berk & Çelik, Çiğdem & Cunningham, Scott & Cuevas, P. Facundo & Parisotto, Luca, 2021.
"Children on the move: Progressive redistribution of humanitarian cash transfers among refugees,"
Journal of Development Economics, Elsevier, vol. 153(C).
- Ozler,Berk & Celik,Cigdem & Cunningham,Scott & Cuevas,Pablo Facundo & Parisotto,Luca, 2020. "Children on the Move : Progressive Redistribution of Humanitarian Cash Transfers among Refugees," Policy Research Working Paper Series 9471, The World Bank.
- Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
- Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
- Lechner, Michael, 2008. "A note on endogenous control variables in causal studies," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 190-195, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:661-672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.