IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.06101.html
   My bibliography  Save this paper

Mean-Field Games with Differing Beliefs for Algorithmic Trading

Author

Listed:
  • Philippe Casgrain
  • Sebastian Jaimungal

Abstract

Even when confronted with the same data, agents often disagree on a model of the real-world. Here, we address the question of how interacting heterogenous agents, who disagree on what model the real-world follows, optimize their trading actions. The market has latent factors that drive prices, and agents account for the permanent impact they have on prices. This leads to a large stochastic game, where each agents' performance criteria are computed under a different probability measure. We analyse the mean-field game (MFG) limit of the stochastic game and show that the Nash equilibrium is given by the solution to a non-standard vector-valued forward-backward stochastic differential equation. Under some mild assumptions, we construct the solution in terms of expectations of the filtered states. Furthermore, we prove the MFG strategy forms an $\epsilon$-Nash equilibrium for the finite player game. Lastly, we present a least-squares Monte Carlo based algorithm for computing the equilibria and show through simulations that increasing disagreement may increase price volatility and trading activity.

Suggested Citation

  • Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean-Field Games with Differing Beliefs for Algorithmic Trading," Papers 1810.06101, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1810.06101
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.06101
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    2. Rene Carmona & Jean-Pierre Fouque & Li-Hsien Sun, 2013. "Mean Field Games and Systemic Risk," Papers 1308.2172, arXiv.org.
    3. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean Field Games with Partial Information for Algorithmic Trading," Papers 1803.04094, arXiv.org, revised Mar 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. 'Alvaro Cartea & Sebastian Jaimungal & Leandro S'anchez-Betancourt, 2019. "Latency and Liquidity Risk," Papers 1908.03281, arXiv.org.
    2. Johannes Muhle-Karbe & Marcel Nutz & Xiaowei Tan, 2019. "Asset Pricing with Heterogeneous Beliefs and Illiquidity," Papers 1905.05730, arXiv.org, revised Mar 2020.
    3. Moritz Vo{ss}, 2019. "A two-player portfolio tracking game," Papers 1911.05122, arXiv.org, revised Jul 2022.
    4. Philippe Casgrain & Brian Ning & Sebastian Jaimungal, 2019. "Deep Q-Learning for Nash Equilibria: Nash-DQN," Papers 1904.10554, arXiv.org, revised Oct 2022.
    5. Christoph Belak & Daniel Hoffmann & Frank T. Seifried, 2020. "Continuous-Time Mean Field Games with Finite StateSpace and Common Noise," Working Paper Series 2020-05, University of Trier, Research Group Quantitative Finance and Risk Analysis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    2. Lacker, Daniel, 2015. "Mean field games via controlled martingale problems: Existence of Markovian equilibria," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2856-2894.
    3. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean Field Games with Partial Information for Algorithmic Trading," Papers 1803.04094, arXiv.org, revised Mar 2019.
    4. Christoph Belak & Daniel Hoffmann & Frank T. Seifried, 2020. "Continuous-Time Mean Field Games with Finite StateSpace and Common Noise," Working Paper Series 2020-05, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    5. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    6. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    7. Marcel Nutz, 2016. "A Mean Field Game of Optimal Stopping," Papers 1605.09112, arXiv.org, revised Nov 2017.
    8. Ahuja, Saran & Ren, Weiluo & Yang, Tzu-Wei, 2019. "Forward–backward stochastic differential equations with monotone functionals and mean field games with common noise," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3859-3892.
    9. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    10. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    11. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    12. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    13. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    14. Chen, Enxian & Qiao, Lei & Sun, Xiang & Sun, Yeneng, 2022. "Robust perfect equilibrium in large games," Journal of Economic Theory, Elsevier, vol. 201(C).
    15. Berenice Anne Neumann, 2020. "Stationary Equilibria of Mean Field Games with Finite State and Action Space," Dynamic Games and Applications, Springer, vol. 10(4), pages 845-871, December.
    16. Matteo Basei & Huyên Pham, 2019. "A Weak Martingale Approach to Linear-Quadratic McKean–Vlasov Stochastic Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 347-382, May.
    17. Yves Achdou & Pierre-Noël Giraud & Jean-Michel Lasry & Pierre Louis Lions, 2016. "A Long-Term Mathematical Model for Mining Industries," Post-Print hal-01412551, HAL.
    18. Kashif Mehmood & Muhammad Tabish Niaz & Hyung Seok Kim, 2019. "A Power Control Mean Field Game Framework for Battery Lifetime Enhancement of Coexisting Machine-Type Communications," Energies, MDPI, vol. 12(20), pages 1-23, October.
    19. Ivan Cherednik, 2019. "Artificial intelligence approach to momentum risk-taking," Papers 1911.08448, arXiv.org, revised Mar 2020.
    20. Haoyang Cao & Jodi Dianetti & Giorgio Ferrari, 2021. "Stationary Discounted and Ergodic Mean Field Games of Singular Control," Papers 2105.07213, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.06101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.