IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.08448.html
   My bibliography  Save this paper

Artificial intelligence approach to momentum risk-taking

Author

Listed:
  • Ivan Cherednik

Abstract

We propose a mathematical model of momentum risk-taking, which is essentially real-time risk management focused on short-term volatility of stock markets. Its implementation, our fully automated momentum equity trading system presented systematically, proved to be successful in extensive historical and real-time experiments. Momentum risk-taking is one of the key components of general decision-making, a challenge for artificial intelligence and machine learning with deep roots in cognitive science; its variants beyond stock markets are discussed. We begin with a new algebraic-type theory of news impact on share-prices, which describes well their power growth, periodicity, and the market phenomena like price targets and profit-taking. This theory generally requires Bessel and hypergeometric functions. Its discretization results in some tables of bids, which are basically expected returns for main investment horizons, the key in our trading system. The ML procedures we use are similar to those in neural networking. A preimage of our approach is the new contract card game provided at the end, a combination of bridge and poker. Relations to random processes and the fractional Brownian motion are outlined.

Suggested Citation

  • Ivan Cherednik, 2019. "Artificial intelligence approach to momentum risk-taking," Papers 1911.08448, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:1911.08448
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.08448
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    2. Yang, Xuebing & Zhang, Huilan, 2019. "Extreme absolute strength of stocks and performance of momentum strategies," Journal of Financial Markets, Elsevier, vol. 44(C), pages 71-90.
    3. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    4. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. repec:bla:jfinan:v:59:y:2004:i:3:p:1039-1082 is not listed on IDEAS
    6. Patrick Cheridito & Tardu Sepin, 2014. "Optimal Trade Execution Under Stochastic Volatility and Liquidity," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 342-362, September.
    7. Conrad, Jennifer & Kaul, Gautam, 1998. "An Anatomy of Trading Strategies," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 489-519.
    8. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malay Bhattacharyya & Dileep Kumar M & Ramesh Kumar, 2009. "Optimal sampling frequency for volatility forecast models for the Indian stock markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 38-54.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    3. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    4. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    5. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    6. Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    8. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    9. Wolff, Christian & Lehnert, Thorsten, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
    10. Philippe Masset & Martin Wallmeier, 2010. "A High†Frequency Investigation of the Interaction between Volatility and DAX Returns," European Financial Management, European Financial Management Association, vol. 16(3), pages 327-344, June.
    11. Mazouz, Khelifa & Joseph, Nathan L. & Joulmer, Joulmer, 2009. "Stock price reaction following large one-day price changes: UK evidence," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1481-1493, August.
    12. Jui-Cheng Hung & Tien-Wei Lou & Yi-Hsien Wang & Jun-De Lee, 2013. "Evaluating and improving GARCH-based volatility forecasts with range-based estimators," Applied Economics, Taylor & Francis Journals, vol. 45(28), pages 4041-4049, October.
    13. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    14. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    15. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    16. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    17. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    18. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    19. Fuertes, Ana-Maria & Phylaktis, Kate & Yan, Cheng, 2019. "Uncovered equity “disparity” in emerging markets," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
    20. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.08448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.