IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.02233.html
   My bibliography  Save this paper

Deeply Learning Derivatives

Author

Listed:
  • Ryan Ferguson
  • Andrew Green

Abstract

This paper uses deep learning to value derivatives. The approach is broadly applicable, and we use a call option on a basket of stocks as an example. We show that the deep learning model is accurate and very fast, capable of producing valuations a million times faster than traditional models. We develop a methodology to randomly generate appropriate training data and explore the impact of several parameters including layer width and depth, training data quality and quantity on model speed and accuracy.

Suggested Citation

  • Ryan Ferguson & Andrew Green, 2018. "Deeply Learning Derivatives," Papers 1809.02233, arXiv.org, revised Oct 2018.
  • Handle: RePEc:arx:papers:1809.02233
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.02233
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raymond Brummelhuis & Zhongmin Luo, 2017. "CDS Rate Construction Methods by Machine Learning Techniques," Papers 1705.06899, arXiv.org.
    2. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    3. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
    2. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    3. Jaegi Jeon & Kyunghyun Park & Jeonggyu Huh, 2021. "Extensive networks would eliminate the demand for pricing formulas," Papers 2101.09064, arXiv.org.
    4. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    5. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    6. Thibault Collin, 2023. "Using Deep Learning to Hedge Rainbow Options," Working Papers hal-04060013, HAL.
    7. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    8. Gan, Lirong & Wang, Huamao & Yang, Zhaojun, 2020. "Machine learning solutions to challenges in finance: An application to the pricing of financial products," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.
    10. Weilong Fu & Ali Hirsa, 2022. "Solving barrier options under stochastic volatility using deep learning," Papers 2207.00524, arXiv.org.
    11. Pietro Rossi & Flavio Cocco & Giacomo Bormetti, 2020. "Deep learning Profit & Loss," Papers 2006.09955, arXiv.org, revised Aug 2020.
    12. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    13. Brian Ning & Sebastian Jaimungal & Xiaorong Zhang & Maxime Bergeron, 2021. "Arbitrage-Free Implied Volatility Surface Generation with Variational Autoencoders," Papers 2108.04941, arXiv.org, revised Jan 2022.
    14. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    15. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Learning for Exotic Option Valuation," Papers 2103.12551, arXiv.org, revised Sep 2021.
    16. Jiří Witzany & Milan Fičura, 2023. "Machine Learning Applications to Valuation of Options on Non-liquid Markets," FFA Working Papers 5.001, Prague University of Economics and Business, revised 24 Jan 2023.
    17. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    18. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    2. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    3. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    4. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    5. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    6. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    7. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    8. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    9. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    10. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    12. Alejandro Plastina & Sergio H. Lence & Ariel Ortiz‐Bobea, 2021. "How weather affects the decomposition of total factor productivity in U.S. agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 215-234, March.
    13. Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
    14. Jozef Baruník, 2008. "How Do Neural Networks Enhance the Predictability of Central European Stock Returns?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(07-08), pages 358-376, Oktober.
    15. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    16. Jaydip Sen & Tamal Datta Chaudhuri, 2017. "A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector," Papers 1705.01144, arXiv.org.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Philippe Paquet, 1997. "L'utilisation des réseaux de neurones artificiels en finance," Working Papers 1997-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    19. Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    20. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.02233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.