Deep Learning for Exotic Option Valuation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Eduardo Abi Jaber, 2019. "Lifting the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 1995-2013, December.
- Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
- Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
- Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Ryan Ferguson & Andrew Green, 2018. "Deeply Learning Derivatives," Papers 1809.02233, arXiv.org, revised Oct 2018.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Hull, John & Suo, Wulin, 2002. "A Methodology for Assessing Model Risk and its Application to the Implied Volatility Function Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 297-318, June.
- Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
- Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
- Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Valentin Tissot-Daguette, 2021. "Projection of Functionals and Fast Pricing of Exotic Options," Papers 2111.03713, arXiv.org, revised Apr 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
- Jiří Witzany & Milan Fičura, 2023. "Machine Learning Applications to Valuation of Options on Non-liquid Markets," FFA Working Papers 5.001, Prague University of Economics and Business, revised 24 Jan 2023.
- Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
- Yiru Xi & Hoi Ying Wong, 2021. "Discrete variance swap in a rough volatility economy," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1640-1654, October.
- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
- Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
- Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
- Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
- Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
- Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
- Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
- Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
- Eduardo Abi Jaber, 2020. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Working Papers hal-02412741, HAL.
- Eduardo Abi Jaber, 2019. "The Laplace transform of the integrated Volterra Wishart process," Papers 1911.07719, arXiv.org, revised Jul 2024.
- Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
- Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02367200, HAL.
- Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
- Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2021-04-05 (Computational Economics)
- NEP-FMK-2021-04-05 (Financial Markets)
- NEP-RMG-2021-04-05 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.12551. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.