A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
- Jaydip SEN & Tamal DATTA CHAUDHURI, 2016. "An Alternative Framework for Time Series Decomposition and Forecastingand its Relevance for Portfolio Choice – A Comparative Study of the Indian Consumer Durable and Small Cap Sectors," Journal of Economics Library, KSP Journals, vol. 3(2), pages 303-326, June.
- Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
- Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994.
"A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,"
Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
- James M. Hutchinson & Andrew W. Lo & Tomaso Poggio, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks," NBER Working Papers 4718, National Bureau of Economic Research, Inc.
- repec:arx:papers:1604.04044 is not listed on IDEAS
- Kyoung‐Jae Kim, 2004. "Artificial neural networks with feature transformation based on domain knowledge for the prediction of stock index futures," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(3), pages 167-176, July.
- Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
- Perez-Rodriguez, Jorge V. & Torra, Salvador & Andrada-Felix, Julian, 2005. "STAR and ANN models: forecasting performance on the Spanish "Ibex-35" stock index," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 490-509, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jaydip Sen & Ashwin Kumar R S & Geetha Joseph & Kaushik Muthukrishnan & Koushik Tulasi & Praveen Varukolu, 2022. "Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market," Papers 2201.05570, arXiv.org.
- Sidra Mehtab & Jaydip Sen, 2019. "A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing," Papers 1912.07700, arXiv.org.
- Jaydip Sen & Arpit Awad & Aaditya Raj & Gourav Ray & Pusparna Chakraborty & Sanket Das & Subhasmita Mishra, 2022. "Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market," Papers 2208.07166, arXiv.org.
- Sidra Mehtab & Jaydip Sen, 2020. "A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models," Papers 2004.11697, arXiv.org, revised May 2021.
- Sidra Mehtab & Jaydip Sen, 2020. "Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries," Papers 2001.09769, arXiv.org.
- Sidra Mehtab & Jaydip Sen & Abhishek Dutta, 2020. "Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models," Papers 2009.10819, arXiv.org.
- Ananda Chatterjee & Hrisav Bhowmick & Jaydip Sen, 2021. "Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models," Papers 2111.01137, arXiv.org.
- Jaydip Sen, 2018. "Stock composition of mutual funds and fund style: a time series decomposition approach towards testing for consistency," International Journal of Business Forecasting and Marketing Intelligence, Inderscience Enterprises Ltd, vol. 4(3), pages 235-292.
- Jaydip Sen & Aditya Jaiswal & Anshuman Pathak & Atish Kumar Majee & Kushagra Kumar & Manas Kumar Sarkar & Soubhik Maji, 2023. "A Comparative Analysis of Portfolio Optimization Using Mean-Variance, Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian Stock Market," Papers 2305.17523, arXiv.org.
- Suranjan Majumder & Subham Roy & Arghadeep Bose & Indrajit Roy Chowdhury, 2023. "Understanding regional disparities in healthcare quality and accessibility in West Bengal, India: A multivariate analysis," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(5), pages 1086-1113, June.
- Tasnim Uddin Chowdhury & Md. Shahidul Islam, 2021. "ARIMA Time Series Analysis in Forecasting Daily Stock Price of Chittagong Stock Exchange (CSE)," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 5(6), pages 214-233, June.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Jaydip Sen & Saikat Mondal & Sidra Mehtab, 2021. "Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model," Papers 2111.04976, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:arx:papers:1604.04044 is not listed on IDEAS
- Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
- Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020.
"Artificial Intelligence in Asset Management,"
CEPR Discussion Papers
14525, C.E.P.R. Discussion Papers.
- Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020. "Artificial intelligence in asset management," Working Papers 20202001, Cambridge Judge Business School, University of Cambridge.
- I. Marta Miranda García & María‐Jesús Segovia‐Vargas & Usue Mori & José A. Lozano, 2023. "Early prediction of Ibex 35 movements," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1150-1166, August.
- Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
- Jaydip Sen & Tamal Datta Chaudhuri, 2017. "An Investigation of the Structural Characteristics of the Indian IT Sector and the Capital Goods Sector: An Application of the R Programming in Time Series Decomposition and Forecasting," Papers 1706.07821, arXiv.org.
- Jaydip SEN & Tamal DATTA CHAUDHURI, 2016. "An Alternative Framework for Time Series Decomposition and Forecastingand its Relevance for Portfolio Choice – A Comparative Study of the Indian Consumer Durable and Small Cap Sectors," Journal of Economics Library, KSP Journals, vol. 3(2), pages 303-326, June.
- Adam Fadlalla & Farzaneh Amani, 2014. "Predicting Next Trading Day Closing Price Of Qatar Exchange Index Using Technical Indicators And Artificial Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 209-223, October.
- Timotej Jagric & Sebastjan Strasek, 2011. "Behavioural patterns as determinants of market movements: evidence from an emerging market," Applied Financial Economics, Taylor & Francis Journals, vol. 21(7), pages 481-491.
- Lin, Shao-Bin & Chen, Chun-Da, 2013. "Applying the Model Order Reduction method to a European option pricing model," Economic Modelling, Elsevier, vol. 33(C), pages 533-536.
- Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Sidra Mehtab & Jaydip Sen, 2020. "A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models," Papers 2004.11697, arXiv.org, revised May 2021.
- Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
- Lei Fan & Justin Sirignano, 2024. "Machine Learning Methods for Pricing Financial Derivatives," Papers 2406.00459, arXiv.org.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000.
"Nonparametric estimation of American options' exercise boundaries and call prices,"
Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
- Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "Nonparametric Estimation of American Options Exercise Boundaries and Call Prices," CIRANO Working Papers 96s-24, CIRANO.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Ruoxuan Xiong & Eric P. Nichols & Yuan Shen, 2015. "Deep Learning Stock Volatility with Google Domestic Trends," Papers 1512.04916, arXiv.org, revised Feb 2016.
- Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
- Eunho Koo & Geonwoo Kim, 2023. "A New Neural Network Approach for Predicting the Volatility of Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1665-1679, April.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2017-05-14 (Forecasting)
- NEP-HEA-2017-05-14 (Health Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1705.01144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.