IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.01038.html
   My bibliography  Save this paper

Shape-Enforcing Operators for Point and Interval Estimators

Author

Listed:
  • Xi Chen
  • Victor Chernozhukov
  • Iv'an Fern'andez-Val
  • Scott Kostyshak
  • Ye Luo

Abstract

A common problem in econometrics, statistics, and machine learning is to estimate and make inference on functions that satisfy shape restrictions. For example, distribution functions are nondecreasing and range between zero and one, height growth charts are nondecreasing in age, and production functions are nondecreasing and quasi-concave in input quantities. We propose a method to enforce these restrictions ex post on point and interval estimates of the target function by applying functional operators. If an operator satisfies certain properties that we make precise, the shape-enforced point estimates are closer to the target function than the original point estimates and the shape-enforced interval estimates have greater coverage and shorter length than the original interval estimates. We show that these properties hold for six different operators that cover commonly used shape restrictions in practice: range, convexity, monotonicity, monotone convexity, quasi-convexity, and monotone quasi-convexity. We illustrate the results with two empirical applications to the estimation of a height growth chart for infants in India and a production function for chemical firms in China.

Suggested Citation

  • Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:1809.01038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.01038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Groeneboom,Piet & Jongbloed,Geurt, 2014. "Nonparametric Estimation under Shape Constraints," Cambridge Books, Cambridge University Press, number 9780521864015, September.
    2. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    3. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    4. Beare, Brendan K. & Moon, Jong-Myun, 2015. "Nonparametric Tests Of Density Ratio Ordering," Econometric Theory, Cambridge University Press, vol. 31(3), pages 471-492, June.
    5. Denis Chetverikov & Andres Santos & Azeem M. Shaikh, 2018. "The Econometrics of Shape Restrictions," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 31-63, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    2. Harold D. Chiang & Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Linear programming approach to nonparametric inference under shape restrictions: with an application to regression kink designs," Papers 2102.06586, arXiv.org.
    3. Zheng Fang & Juwon Seo, 2021. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Econometrica, Econometric Society, vol. 89(5), pages 2439-2458, September.
    4. Zheng Fang, 2021. "A Unifying Framework for Testing Shape Restrictions," Papers 2107.12494, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Fang, 2021. "A Unifying Framework for Testing Shape Restrictions," Papers 2107.12494, arXiv.org, revised Aug 2021.
    2. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
    3. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    4. Seo, Juwon, 2018. "Tests of stochastic monotonicity with improved power," Journal of Econometrics, Elsevier, vol. 207(1), pages 53-70.
    5. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    6. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    7. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    8. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    9. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    10. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    11. Mao, Lu, 2022. "Identification of the outcome distribution and sensitivity analysis under weak confounder–instrument interaction," Statistics & Probability Letters, Elsevier, vol. 189(C).
    12. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    13. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    14. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
    15. Ruixuan Liu & Zhengfei Yu, 2019. "Simple Semiparametric Estimation of Ordered Response Models: with an Application to the Interdependence Duration Models," Tsukuba Economics Working Papers 2019-004, Faculty of Humanities and Social Sciences, University of Tsukuba.
    16. Yoici Arai & Taisuke Otsu & Mengshan Xu, 2022. "GLS under monotone heteroskedasticity," STICERD - Econometrics Paper Series 625, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Shujie Ma & Oliver Linton & Jiti Gao, 2018. "Estimation in semiparametric quantile factor models," CeMMAP working papers CWP07/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    19. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Zhipeng Liao & Xiaoxia Shi, 2020. "A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric models," Quantitative Economics, Econometric Society, vol. 11(3), pages 983-1017, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.01038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.