IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.06586.html
   My bibliography  Save this paper

Linear programming approach to nonparametric inference under shape restrictions: with an application to regression kink designs

Author

Listed:
  • Harold D. Chiang
  • Kengo Kato
  • Yuya Sasaki
  • Takuya Ura

Abstract

We develop a novel method of constructing confidence bands for nonparametric regression functions under shape constraints. This method can be implemented via a linear programming, and it is thus computationally appealing. We illustrate a usage of our proposed method with an application to the regression kink design (RKD). Econometric analyses based on the RKD often suffer from wide confidence intervals due to slow convergence rates of nonparametric derivative estimators. We demonstrate that economic models and structures motivate shape restrictions, which in turn contribute to shrinking the confidence interval for an analysis of the causal effects of unemployment insurance benefits on unemployment durations.

Suggested Citation

  • Harold D. Chiang & Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Linear programming approach to nonparametric inference under shape restrictions: with an application to regression kink designs," Papers 2102.06586, arXiv.org.
  • Handle: RePEc:arx:papers:2102.06586
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.06586
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camille Landais, 2015. "Assessing the Welfare Effects of Unemployment Benefits Using the Regression Kink Design," American Economic Journal: Economic Policy, American Economic Association, vol. 7(4), pages 243-278, November.
    2. David Card & David S. Lee & Zhuan Pei & Andrea Weber, 2015. "Inference on Causal Effects in a Generalized Regression Kink Design," Econometrica, Econometric Society, vol. 83, pages 2453-2483, November.
    3. Helena Skyt Nielsen & Torben Sørensen & Christopher Taber, 2010. "Estimating the Effect of Student Aid on College Enrollment: Evidence from a Government Grant Policy Reform," NBER Chapters, in: Income Taxation, Trans-Atlantic Public Economics Seminar (TAPES), pages 185-215, National Bureau of Economic Research, Inc.
    4. Zheng Fang & Andres Santos & Azeem M. Shaikh & Alexander Torgovitsky, 2023. "Inference for Large‐Scale Linear Systems With Known Coefficients," Econometrica, Econometric Society, vol. 91(1), pages 299-327, January.
    5. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    6. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    7. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    8. Horowitz, Joel L. & Lee, Sokbae, 2017. "Nonparametric estimation and inference under shape restrictions," Journal of Econometrics, Elsevier, vol. 201(1), pages 108-126.
    9. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    10. Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
    11. Chen, Heng & Chiang, Harold D. & Sasaki, Yuya, 2020. "Quantile Treatment Effects In Regression Kink Designs," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1167-1191, December.
    12. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    13. Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(5), pages 2439-2472.
    14. Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957, Cowles Foundation for Research in Economics, Yale University, revised Oct 2014.
    15. Chiang, Harold D. & Sasaki, Yuya, 2019. "Causal inference by quantile regression kink designs," Journal of Econometrics, Elsevier, vol. 210(2), pages 405-433.
    16. Freyberger, Joachim & Horowitz, Joel L., 2015. "Identification and shape restrictions in nonparametric instrumental variables estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 41-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Fang, 2021. "A Unifying Framework for Testing Shape Restrictions," Papers 2107.12494, arXiv.org, revised Aug 2021.
    2. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    2. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    3. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    4. Byunghoon Kang, 2017. "Inference in Nonparametric Series Estimation with Data-Dependent Undersmoothing," Working Papers 170712442, Lancaster University Management School, Economics Department.
    5. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    6. Michael S. Kofoed, 2022. "Pell Grants and Labor Supply: Evidence from a Regression Kink," Upjohn Working Papers 22-363, W.E. Upjohn Institute for Employment Research.
    7. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    8. Peter Ganong & Simon Jäger, 2018. "A Permutation Test for the Regression Kink Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 494-504, April.
    9. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.
    10. Michihito Ando, 2017. "How much should we trust regression-kink-design estimates?," Empirical Economics, Springer, vol. 53(3), pages 1287-1322, November.
    11. Barbara Engels & Johannes Geyer & Peter Haan, 2016. "Pension Incentives and Early Retirement," Discussion Papers of DIW Berlin 1617, DIW Berlin, German Institute for Economic Research.
    12. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 732-765.
    13. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    14. Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
    15. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    16. Huang, Po-Chun & Yang, Tzu-Ting, 2021. "The welfare effects of extending unemployment benefits: Evidence from re-employment and unemployment transfers," Journal of Public Economics, Elsevier, vol. 202(C).
    17. Martin Gonzalez-Rozada & Hernan Ruffo, 2022. "The welfare effects of unemployment insurance in Argentina. New estimates using changes in the schedule of transfers," Papers 2202.01844, arXiv.org.
    18. Simona Gamba & Niklas Jakobsson & Mikael Svensson, 2022. "The impact of cost-sharing on prescription drug demand: evidence from a double-difference regression kink design," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(9), pages 1591-1599, December.
    19. Antti Saastamoinen & Mika Kortelainen, 2020. "When Does Money Stick in Education? Evidence from A Kinked Grant Rule," Education Finance and Policy, MIT Press, vol. 15(4), pages 708-735, Fall.
    20. Tomi Kyyrä & Hanna Pesola, 2020. "The Effects of UI Benefits on Unemployment and Subsequent Outcomes: Evidence from a Kinked Benefit Rule," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1135-1160, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.06586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.