IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v91y2015icp20-39.html
   My bibliography  Save this article

Conditional quantile estimation based on optimal quantization: From theory to practice

Author

Listed:
  • Charlier, Isabelle
  • Paindaveine, Davy
  • Saracco, Jérôme

Abstract

Small-sample properties of a nonparametric estimator of conditional quantiles based on optimal quantization, that was recently introduced (Charlier et al., 2015), are investigated. More precisely, (i) the practical implementation of this estimator is discussed (by proposing in particular a method to properly select the corresponding smoothing parameter, namely the number of quantizers) and (ii) its finite-sample performances are compared to those of classical competitors. Monte Carlo studies reveal that the quantization-based estimator competes well in all cases and sometimes dominates its competitors, particularly when the regression function is quite complex. A real data set is also treated. While the main focus is on the case of a univariate covariate, simulations are also conducted in the bivariate case.

Suggested Citation

  • Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
  • Handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:20-39
    DOI: 10.1016/j.csda.2015.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001358
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    2. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    3. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    4. Chaudhuri, Probal, 1991. "Global nonparametric estimation of conditional quantile functions and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 246-269, November.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    7. X. He & P. Ng & S. Portnoy, 1998. "Bivariate quantile smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 537-550.
    8. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    9. Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2006. "Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 311-323, February.
    10. Isabelle Charlier & Davy Paindaveine, 2014. "Conditional Quantile Estimation through Optimal Quantization," Working Papers ECARES ECARES 2014-28, ULB -- Universite Libre de Bruxelles.
    11. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    12. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    13. Roger Koenker & Ivan Mizera, 2004. "Penalized triograms: total variation regularization for bivariate smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 145-163, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    2. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    3. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    4. Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.
    5. Monica Pratesi & M. Ranalli & Nicola Salvati, 2009. "Nonparametric -quantile regression using penalised splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 287-304.
    6. Gimenes, Nathalie & Guerre, Emmanuel, 2022. "Quantile regression methods for first-price auctions," Journal of Econometrics, Elsevier, vol. 226(2), pages 224-247.
    7. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
    8. repec:wyi:journl:002114 is not listed on IDEAS
    9. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    10. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    11. R H Spady & S Stouli, 2018. "Dual regression," Biometrika, Biometrika Trust, vol. 105(1), pages 1-18.
    12. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
    13. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    14. Tengyuan Liang, 2022. "Universal prediction band via semi‐definite programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1558-1580, September.
    15. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
    16. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    17. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    18. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    19. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    20. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    21. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:20-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.