IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.09331.html
   My bibliography  Save this paper

Measure-valued processes for energy markets

Author

Listed:
  • Christa Cuchiero
  • Luca Di Persio
  • Francesco Guida
  • Sara Svaluto-Ferro

Abstract

We introduce a framework that allows to employ (non-negative) measure-valued processes for energy market modeling, in particular for electricity and gas futures. Interpreting the process' spatial structure as time to maturity, we show how the Heath-Jarrow-Morton approach can be translated to this framework, thus guaranteeing arbitrage free modeling in infinite dimensions. We derive an analog to the HJM-drift condition and then treat in a Markovian setting existence of non-negative measure-valued diffusions that satisfy this condition. To analyze mathematically convenient classes we build on Cuchiero et al. (2021) and consider measure-valued polynomial and affine diffusions, where we can precisely specify the diffusion part in terms of continuous functions satisfying certain admissibility conditions. For calibration purposes these functions can then be parameterized by neural networks yielding measure-valued analogs of neural SPDEs. By combining Fourier approaches or the moment formula with stochastic gradient descent methods, this then allows for tractable calibration procedures which we also test by way of example on market data. We also sketch how measure-valued processes can be applied in the context of renewable energy production modeling.

Suggested Citation

  • Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
  • Handle: RePEc:arx:papers:2210.09331
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.09331
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    2. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    3. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    4. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    5. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    6. Filipovic, Damir, 2005. "Time-inhomogeneous affine processes," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 639-659, April.
    7. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    9. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    10. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    11. Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
    12. Christa Cuchiero & Francesco Guida & Luca di Persio & Sara Svaluto-Ferro, 2021. "Measure-valued affine and polynomial diffusions," Papers 2112.15129, arXiv.org.
    13. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuchiero, Christa & Di Persio, Luca & Guida, Francesco & Svaluto-Ferro, Sara, 2024. "Measure-valued affine and polynomial diffusions," Stochastic Processes and their Applications, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org.
    2. Cuchiero, Christa & Di Persio, Luca & Guida, Francesco & Svaluto-Ferro, Sara, 2024. "Measure-valued affine and polynomial diffusions," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    3. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    4. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
    5. Christa Cuchiero & Francesco Guida & Luca di Persio & Sara Svaluto-Ferro, 2021. "Measure-valued affine and polynomial diffusions," Papers 2112.15129, arXiv.org.
    6. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    7. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    8. Fred Espen Benth & Heidar Eyjolfsson, 2024. "Robustness of Hilbert space-valued stochastic volatility models," Finance and Stochastics, Springer, vol. 28(4), pages 1117-1146, October.
    9. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    10. repec:uts:finphd:41 is not listed on IDEAS
    11. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    12. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Jul 2024.
    13. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    14. Eduardo Abi Jaber & Bruno Bouchard & Camille Illand & Eduardo Abi Jaber, 2018. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Post-Print hal-01349639, HAL.
    15. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    16. Claudio Fontana & Eckhard Platen & Stefan Tappe, 2024. "Real-world models for multiple term structures: a unifying HJM framework," Papers 2411.01983, arXiv.org.
    17. Abi Jaber, Eduardo & Bouchard, Bruno & Illand, Camille, 2019. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1726-1748.
    18. Matteo Gambara & Josef Teichmann, 2020. "Consistent Recalibration Models and Deep Calibration," Papers 2006.09455, arXiv.org, revised Jul 2021.
    19. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    20. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    21. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.09331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.