IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i4p1947-1971.html
   My bibliography  Save this article

Markov cubature rules for polynomial processes

Author

Listed:
  • Filipović, Damir
  • Larsson, Martin
  • Pulido, Sergio

Abstract

We study discretizations of polynomial processes using finite state Markov processes satisfying suitable moment matching conditions. The states of these Markov processes together with their transition probabilities can be interpreted as Markov cubature rules. The polynomial property allows us to study such rules using algebraic techniques. Markov cubature rules aid the tractability of path-dependent tasks such as American option pricing in models where the underlying factors are polynomial processes.

Suggested Citation

  • Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:1947-1971
    DOI: 10.1016/j.spa.2019.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919303850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    2. Damien Ackerer & Damir Filipovi'c & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Papers 1605.07099, arXiv.org, revised Mar 2018.
    3. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    4. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    5. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Francesca Biagini & Yinglin Zhang, 2016. "Polynomial Diffusion Models for Life Insurance Liabilities," Papers 1602.07910, arXiv.org, revised Sep 2016.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    9. Damir Filipovic & Martin Larsson & Tony Ware, 2017. "Polynomial processes for power prices," Papers 1710.10293, arXiv.org, revised Apr 2018.
    10. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    11. Biagini, Francesca & Zhang, Yinglin, 2016. "Polynomial diffusion models for life insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 114-129.
    12. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    13. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    14. Damir Filipović & Martin Larsson & Tony Ware, 2018. "Polynomial Processes for Power Prices," Swiss Finance Institute Research Paper Series 18-34, Swiss Finance Institute.
    15. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    16. Yuri Kifer, 2006. "Error estimates for binomial approximations of game options," Papers math/0607123, arXiv.org.
    17. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    18. Kristian Stegenborg Larsen & Michael Sørensen, 2007. "Diffusion Models For Exchange Rates In A Target Zone," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 285-306, April.
    19. Damir Filipović & Martin Larsson & Anders B. Trolle, 2017. "Linear-Rational Term Structure Models," Journal of Finance, American Finance Association, vol. 72(2), pages 655-704, April.
    20. Damir Filipović & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Swiss Finance Institute Research Paper Series 17-60, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Feng & Jianfeng Zhang, 2021. "Cubature Method for Stochastic Volterra Integral Equations," Papers 2110.12853, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson & Sergio Pulido, 2017. "Markov cubature rules for polynomial processes," Papers 1707.06849, arXiv.org, revised Jun 2019.
    2. Xi Kleisinger-Yu & Vlatka Komaric & Martin Larsson & Markus Regez, 2019. "A multi-factor polynomial framework for long-term electricity forwards with delivery period," Papers 1908.08954, arXiv.org, revised Jun 2020.
    3. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    4. Fred Espen Benth & Silvia Lavagnini, 2019. "Correlators of Polynomial Processes," Papers 1906.11320, arXiv.org, revised Apr 2021.
    5. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    6. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    7. Damir Filipovi'c & Kathrin Glau & Yuji Nakatsukasa & Francesco Statti, 2019. "Weighted Monte Carlo with least squares and randomized extended Kaczmarz for option pricing," Papers 1910.07241, arXiv.org.
    8. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    9. Damien Ackerer & Damir Filipović, 2020. "Linear credit risk models," Finance and Stochastics, Springer, vol. 24(1), pages 169-214, January.
    10. Christa Cuchiero & Francesco Guida & Luca di Persio & Sara Svaluto-Ferro, 2021. "Measure-valued affine and polynomial diffusions," Papers 2112.15129, arXiv.org.
    11. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    12. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    13. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.
    14. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    15. Boonstra, Boris C. & Oosterlee, Cornelis W., 2021. "Valuation of electricity storage contracts using the COS method," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    16. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    17. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    18. Tong, Zhigang & Liu, Allen, 2022. "Pricing variance swaps under subordinated Jacobi stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    19. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    20. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:1947-1971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.