IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v256y2015icp630-641.html
   My bibliography  Save this article

An error corrected Euler–Maruyama method for stiff stochastic differential equations

Author

Listed:
  • Yin, Zhengwei
  • Gan, Siqing

Abstract

In this paper, we propose an error corrected Euler–Maruyama method, which is constructed by adding an error correction term to the Euler–Maruyama scheme. The correction term is derived from an approximation of the difference between the exact solution of stochastic differential equations and the Euler–Maruyama’s continuous-time extension. The method is proved to be mean-square convergent with order 12 and is as easy to implement as standard explicit schemes but much more efficient for solving stiff stochastic problems. For a linear scalar test equation with a scalar noise term, it is shown that the mean-square stability domain of the method is much bigger than that of the Euler–Maruyama method. It is proved the method preserves the mean-square stability and asymptotic stability of the linear scalar equation without any constraint on the numerical step size. Finally, numerical examples are reported to show the accuracy and effectiveness of the method.

Suggested Citation

  • Yin, Zhengwei & Gan, Siqing, 2015. "An error corrected Euler–Maruyama method for stiff stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 630-641.
  • Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:630-641
    DOI: 10.1016/j.amc.2015.01.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    2. P. E. Kloeden & Eckhard Platen, 1992. "Higher-order implicit strong numerical schemes for stochastic differential equations," Published Paper Series 1992-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    2. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    4. Xiaoling Wang & Xiaofei Guan & Pei Yin, 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    5. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    6. Kang, Ting & Li, Qiang & Zhang, Qimin, 2019. "Numerical analysis of the balanced implicit method for stochastic age-dependent capital system with poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 166-177.
    7. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    8. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    9. Nicola Bruti-Liberati & Eckhard Platen, 2008. "Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations," Research Paper Series 222, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    11. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    12. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    13. H. A. Mardones & C. M. Mora, 2020. "First-Order Weak Balanced Schemes for Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 833-852, June.
    14. Tan, Jianguo & Men, Weiwei & Pei, Yongzhen & Guo, Yongfeng, 2017. "Construction of positivity preserving numerical method for stochastic age-dependent population equations," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 57-64.
    15. Yao, Jinran & Gan, Siqing, 2018. "Stability of the drift-implicit and double-implicit Milstein schemes for nonlinear SDEs," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 294-301.
    16. Eckhard Platen & Lei Shi, 2008. "On the Numerical Stability of Simulation Methods for SDES," Research Paper Series 234, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    18. Eckhard Platen & Renata Rendek, 2009. "Quasi-exact Approximation of Hidden Markov Chain Filters," Research Paper Series 258, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    20. Liu, Yufen & Cao, Wanrong & Li, Yuelin, 2022. "Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:630-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.