IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1505.00965.html
   My bibliography  Save this paper

An Introduction to Multilevel Monte Carlo for Option Valuation

Author

Listed:
  • Desmond J. Higham

Abstract

Monte Carlo is a simple and flexible tool that is widely used in computational finance. In this context, it is common for the quantity of interest to be the expected value of a random variable defined via a stochastic differential equation. In 2008, Giles proposed a remarkable improvement to the approach of discretizing with a numerical method and applying standard Monte Carlo. His multilevel Monte Carlo method offers an order of speed up given by the inverse of epsilon, where epsilon is the required accuracy. So computations can run 100 times more quickly when two digits of accuracy are required. The multilevel philosophy has since been adopted by a range of researchers and a wealth of practically significant results has arisen, most of which have yet to make their way into the expository literature. In this work, we give a brief, accessible, introduction to multilevel Monte Carlo and summarize recent results applicable to the task of option evaluation.

Suggested Citation

  • Desmond J. Higham, 2015. "An Introduction to Multilevel Monte Carlo for Option Valuation," Papers 1505.00965, arXiv.org.
  • Handle: RePEc:arx:papers:1505.00965
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1505.00965
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Giles & Desmond Higham & Xuerong Mao, 2009. "Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff," Finance and Stochastics, Springer, vol. 13(3), pages 403-413, September.
    2. Denis Belomestny & John Schoenmakers & Fabian Dickmann, 2013. "Multilevel dual approach for pricing American style derivatives," Finance and Stochastics, Springer, vol. 17(4), pages 717-742, October.
    3. Higham,Desmond J., 2004. "An Introduction to Financial Option Valuation," Cambridge Books, Cambridge University Press, number 9780521547574, September.
    4. Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
    5. Ben Alaya Mohamed & Kebaier Ahmed, 2014. "Multilevel Monte Carlo for Asian options and limit theorems," Monte Carlo Methods and Applications, De Gruyter, vol. 20(3), pages 181-194, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin S. Zhang & Traian A. Pirvu, 2020. "Numerical Simulation of Exchange Option with Finite Liquidity: Controlled Variate Model," Papers 2006.07771, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    2. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    3. Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
    4. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    5. Przybyłowicz, Paweł & Szölgyenyi, Michaela, 2021. "Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    6. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    7. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    8. Zhaojun Yang & Christian-Oliver Ewald & Yajun Xiao, 2009. "Implied Volatility From Asian Options Via Monte Carlo Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 153-178.
    9. Liu, Meng & Bai, Chuanzhi, 2016. "Dynamics of a stochastic one-prey two-predator model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 308-321.
    10. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    11. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    12. David A. Goldberg & Yilun Chen, 2018. "Polynomial time algorithm for optimal stopping with fixed accuracy," Papers 1807.02227, arXiv.org, revised May 2024.
    13. K. Bujok & B. M. Hambly & C. Reisinger, 2015. "Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 579-604, September.
    14. Nicholas Andrew Yap Swee Guan, 2015. "Regression and Convex Switching System Methods for Stochastic Control Problems with Applications to Multiple-Exercise Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 26, July-Dece.
    15. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
    16. Qi Tang & Danni Yan, 2010. "Autoregressive trending risk function and exhaustion in random asset price movement," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 465-470, November.
    17. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    18. Michael Giles & Desmond Higham & Xuerong Mao, 2009. "Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff," Finance and Stochastics, Springer, vol. 13(3), pages 403-413, September.
    19. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
    20. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1505.00965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.