IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v403y2021ics0096300321002812.html
   My bibliography  Save this article

Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift

Author

Listed:
  • Przybyłowicz, Paweł
  • Szölgyenyi, Michaela

Abstract

In this paper we study jump-diffusion stochastic differential equations (SDEs) with a discontinuous drift coefficient and a possibly degenerate diffusion coefficient. Such SDEs appear in applications such as optimal control problems in energy markets. We prove existence and uniqueness of strong solutions. In addition we study the strong convergence order of the Euler–Maruyama scheme and recover the optimal rate 1/2.

Suggested Citation

  • Przybyłowicz, Paweł & Szölgyenyi, Michaela, 2021. "Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 403(C).
  • Handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002812
    DOI: 10.1016/j.amc.2021.126191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321002812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menoukeu Pamen, Olivier & Taguchi, Dai, 2017. "Strong rate of convergence for the Euler–Maruyama approximation of SDEs with Hölder continuous drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2542-2559.
    2. Anton A. Shardin & Michaela Szolgyenyi, 2016. "Optimal Control of an Energy Storage Facility Under a Changing Economic Environment and Partial Information," Papers 1602.04662, arXiv.org, revised Apr 2016.
    3. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    4. Nikolaos Halidias & P. E. Kloeden, 2006. "A note on strong solutions of stochastic differential equations with a discontinuous drift coefficient," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-6, May.
    5. Anton A. Shardin & Michaela Szölgyenyi, 2016. "Optimal Control Of An Energy Storage Facility Under A Changing Economic Environment And Partial Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-27, June.
    6. Deng, Shounian & Fei, Chen & Fei, Weiyin & Mao, Xuerong, 2019. "Generalized Ait-Sahalia-type interest rate model with Poisson jumps and convergence of the numerical approximation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    7. Ngo, Hoang-Long & Taguchi, Dai, 2017. "Strong convergence for the Euler–Maruyama approximation of stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 55-63.
    8. Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Andrés‐Cerezo & Natalia Fabra, 2023. "Storing power: market structure matters," RAND Journal of Economics, RAND Corporation, vol. 54(1), pages 3-53, March.
    2. Przybyłowicz, Paweł & Szölgyenyi, Michaela & Xu, Fanhui, 2021. "Existence and uniqueness of solutions of SDEs with discontinuous drift and finite activity jumps," Statistics & Probability Letters, Elsevier, vol. 174(C).
    3. Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.
    4. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    5. Liu, Meng & Bai, Chuanzhi, 2016. "Dynamics of a stochastic one-prey two-predator model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 308-321.
    6. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    7. Holland, Teodor, 2024. "On the weak rate of convergence for the Euler–Maruyama scheme with Hölder drift," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    8. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    9. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    10. Gao, Xiangyu & Liu, Yi & Wang, Yanxia & Yang, Hongfu & Yang, Maosong, 2021. "Tamed-Euler method for nonlinear switching diffusion systems with locally Hölder diffusion coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    12. Fred Espen Benth & Hanna Zdanowicz, 2016. "Pricing And Hedging Of Energy Spread Options And Volatility Modulated Volterra Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-22, February.
    13. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "Second-order algorithm for simulating stochastic differential equations with white noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 491-497.
    14. Fred Espen Benth & Hanna Zdanowicz, 2014. "Pricing and hedging of energy spread options and volatility modulated Volterra processes," Papers 1409.5801, arXiv.org.
    15. Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
    16. Fred Espen Benth & Heidar Eyjolfsson, 2015. "Representation and approximation of ambit fields in Hilbert space," Papers 1509.08272, arXiv.org.
    17. Peng, Ling & Kloeden, Peter E., 2021. "Time-consistent portfolio optimization," European Journal of Operational Research, Elsevier, vol. 288(1), pages 183-193.
    18. Fred Benth & Nils Detering, 2015. "Pricing and hedging Asian-style options on energy," Finance and Stochastics, Springer, vol. 19(4), pages 849-889, October.
    19. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2022. "A Hawkes model with CARMA(p,q) intensity," Papers 2208.02659, arXiv.org, revised Aug 2022.
    20. Rowińska, Paulina A. & Veraart, Almut E.D. & Gruet, Pierre, 2021. "A multi-factor approach to modelling the impact of wind energy on electricity spot prices," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.