IDEAS home Printed from https://ideas.repec.org/b/cup/cbooks/9780521547574.html
   My bibliography  Save this book

An Introduction to Financial Option Valuation

Author

Listed:
  • Higham,Desmond J.

Abstract

This is a lively textbook providing a solid introduction to financial option valuation for undergraduate students armed with a working knowledge of a first year calculus. Written in a series of short chapters, its self-contained treatment gives equal weight to applied mathematics, stochastics and computational algorithms. No prior background in probability, statistics or numerical analysis is required. Detailed derivations of both the basic asset price model and the Black–Scholes equation are provided along with a presentation of appropriate computational techniques including binomial, finite differences and in particular, variance reduction techniques for the Monte Carlo method. Each chapter comes complete with accompanying stand-alone MATLAB code listing to illustrate a key idea. Furthermore, the author has made heavy use of figures and examples, and has included computations based on real stock market data.

Suggested Citation

  • Higham,Desmond J., 2004. "An Introduction to Financial Option Valuation," Cambridge Books, Cambridge University Press, number 9780521547574.
  • Handle: RePEc:cup:cbooks:9780521547574
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Qi Tang & Danni Yan, 2010. "Autoregressive trending risk function and exhaustion in random asset price movement," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 465-470, November.
    3. Zhaojun Yang & Christian-Oliver Ewald & Yajun Xiao, 2009. "Implied Volatility From Asian Options Via Monte Carlo Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 153-178.
    4. Melek AKSU & Şakir SAKARYA, 2018. "Pricing of Covered Warrants: An Analysis on Borsa İstanbul," Sosyoekonomi Journal, Sosyoekonomi Society.
    5. Somayeh Abdi-Mazraeh & Ali Khani & Safar Irandoust-Pakchin, 2020. "Multiple Shooting Method for Solving Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 723-746, December.
    6. Geon Lee & Tae-Kyoung Kim & Hyun-Gyoon Kim & Jeonggyu Huh, 2022. "Newton–Raphson Emulation Network for Highly Efficient Computation of Numerous Implied Volatilities," JRFM, MDPI, vol. 15(12), pages 1-8, December.
    7. Michael Giles & Desmond Higham & Xuerong Mao, 2009. "Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff," Finance and Stochastics, Springer, vol. 13(3), pages 403-413, September.
    8. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
    9. Desmond J. Higham, 2015. "An Introduction to Multilevel Monte Carlo for Option Valuation," Papers 1505.00965, arXiv.org.
    10. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    11. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    12. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    13. Abhishek Kumar & Ashwin Waikos & Siddhartha P. Chakrabarty, 2011. "Pricing of average strike Asian call option using numerical PDE methods," Papers 1106.1999, arXiv.org.
    14. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    15. Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
    16. Geon Lee & Tae-Kyoung Kim & Hyun-Gyoon Kim & Jeonggyu Huh, 2022. "Newton Raphson Emulation Network for Highly Efficient Computation of Numerous Implied Volatilities," Papers 2210.15969, arXiv.org.
    17. Avner Engel & Tyson R. Browning, 2008. "Designing systems for adaptability by means of architecture options," Systems Engineering, John Wiley & Sons, vol. 11(2), pages 125-146, June.
    18. Kyoung-Sook Moon & Yunju Jeong & Hongjoong Kim, 2016. "An Efficient Binomial Method for Pricing Asian Options," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 151-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:cbooks:9780521547574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Austin (email available below). General contact details of provider: https://www.cambridge.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.