IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1401.2531.html
   My bibliography  Save this paper

Optimal control of uncertain stochastic systems with Markovian switching and its applications to portfolio decisions

Author

Listed:
  • Weiyin Fei

Abstract

This paper first describes a class of uncertain stochastic control systems with Markovian switching, and derives an It\^o-Liu formula for Markov-modulated processes. And we characterize an optimal control law, which satisfies the generalized Hamilton-Jacobi-Bellman (HJB) equation with Markovian switching. Then, by using the generalized HJB equation, we deduce the optimal consumption and portfolio policies under uncertain stochastic financial markets with Markovian switching. Finally, for constant relative risk-aversion (CRRA) felicity functions, we explicitly obtain the optimal consumption and portfolio policies. Moreover, we also make an economic analysis through numerical examples.

Suggested Citation

  • Weiyin Fei, 2014. "Optimal control of uncertain stochastic systems with Markovian switching and its applications to portfolio decisions," Papers 1401.2531, arXiv.org.
  • Handle: RePEc:arx:papers:1401.2531
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1401.2531
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Q. Zhang & G. Yin, 2004. "Nearly-Optimal Asset Allocation in Hybrid Stock Investment Models," Journal of Optimization Theory and Applications, Springer, vol. 121(2), pages 419-444, May.
    4. Alain Bensoussan & Jussi Keppo & Suresh P. Sethi, 2009. "Optimal Consumption And Portfolio Decisions With Partially Observed Real Prices," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 215-236, April.
    5. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    6. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    2. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Tendencias y perspectivas de la ciencia financiera: Un artículo de revisión," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    3. Yaacov Kopeliovich & Michael Pokojovy & Julia Bernatska, 2024. "On Merton's Optimal Portfolio Problem with Sporadic Bankruptcy for Isoelastic Utility," Papers 2403.15923, arXiv.org, revised Nov 2024.
    4. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    5. Zhifu Jia & Cunlin Li, 2023. "Almost Sure Exponential Stability of Uncertain Stochastic Hopfield Neural Networks Based on Subadditive Measures," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    6. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriana Ocejo, 2018. "Explicit solutions to utility maximization problems in a regime-switching market model via Laplace transforms," Papers 1804.08442, arXiv.org.
    2. Jianmin Shi, 2020. "Optimal control of multiple Markov switching stochastic system with application to portfolio decision," Papers 2010.16102, arXiv.org.
    3. Fu, Jun & Wei, Jiaqin & Yang, Hailiang, 2014. "Portfolio optimization in a regime-switching market with derivatives," European Journal of Operational Research, Elsevier, vol. 233(1), pages 184-192.
    4. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.
    5. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    6. Jieting Chen & Yuichiro Kawaguchi, 2018. "Multi-Factor Asset-Pricing Models under Markov Regime Switches: Evidence from the Chinese Stock Market," IJFS, MDPI, vol. 6(2), pages 1-19, May.
    7. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    8. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    9. Luz Rocío Sotomayor & Abel Cadenillas, 2009. "Explicit Solutions Of Consumption‐Investment Problems In Financial Markets With Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 251-279, April.
    10. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2014. "Partial information about contagion risk, self-exciting processes and portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 18-36.
    11. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    12. Yang, Aijun & Liu, Yue & Xiang, Ju & Yang, Hongqiang, 2016. "Optimal buying at the global minimum in a regime switching model," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 50-55.
    13. Kaminski, Kathryn M. & Lo, Andrew W., 2014. "When do stop-loss rules stop losses?," Journal of Financial Markets, Elsevier, vol. 18(C), pages 234-254.
    14. Wing Fung Chong & Gechun Liang, 2018. "Optimal investment and consumption with forward preferences and uncertain parameters," Papers 1807.01186, arXiv.org, revised Nov 2023.
    15. Marcos Escobar & Daniela Neykova & Rudi Zagst, 2015. "Portfolio Optimization In Affine Models With Markov Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-46.
    16. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Optimal consumption-investment with coupled constraints on consumption and investment strategies in a regime switching market with random coefficients," Papers 2211.05291, arXiv.org.
    17. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    18. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    19. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    20. Cheung, Ka Chun & Yang, Hailiang, 2005. "Optimal stopping behavior of equity-linked investment products with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 599-614, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.2531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.