IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v84y2016icp50-55.html
   My bibliography  Save this article

Optimal buying at the global minimum in a regime switching model

Author

Listed:
  • Yang, Aijun
  • Liu, Yue
  • Xiang, Ju
  • Yang, Hongqiang

Abstract

This paper addresses the problem of buying an asset at its expected globally minimal price, to that end, we model it as an optimal stopping problem with regime switching driven by a continuous-time Markov chain. We characterize the optimal stopping time by optimizing the value functions and writing them as solutions of a system of integral equations. Finally we develop a stochastic recursive algorithm for numerical implementation.

Suggested Citation

  • Yang, Aijun & Liu, Yue & Xiang, Ju & Yang, Hongqiang, 2016. "Optimal buying at the global minimum in a regime switching model," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 50-55.
  • Handle: RePEc:eee:matsoc:v:84:y:2016:i:c:p:50-55
    DOI: 10.1016/j.mathsocsci.2016.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489616300671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2016.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David D. Yao & Qing Zhang & Xun Yu Zhou, 2006. "A Regime-Switching Model for European Options," International Series in Operations Research & Management Science, in: Houmin Yan & George Yin & Qing Zhang (ed.), Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, chapter 0, pages 281-300, Springer.
    2. Mary Hardy, 2001. "A Regime-Switching Model of Long-Term Stock Returns," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 41-53.
    3. G. Yin & Q. Zhang & K. Yin, 2003. "Constrained Stochastic Estimation Algorithms for a Class of Hybrid Stock Market Models," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 157-182, July.
    4. Jacques du Toit & Goran Peskir, 2009. "Selling a stock at the ultimate maximum," Papers 0908.1014, arXiv.org.
    5. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    6. Jin-Chuan Duan & Ivilina Popova & Peter Ritchken, 2002. "Option pricing under regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 2(2), pages 116-132.
    7. William M. Boyce, 1970. "Stopping Rules for Selling Bonds," Bell Journal of Economics, The RAND Corporation, vol. 1(1), pages 27-53, Spring.
    8. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    9. Q. Zhang & G. Yin, 2004. "Nearly-Optimal Asset Allocation in Hybrid Stock Investment Models," Journal of Optimization Theory and Applications, Springer, vol. 121(2), pages 419-444, May.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Liu & Aijun Yang & Jijian Zhang & Jingjing Yao, 2020. "An Optimal Stopping Problem of Detecting Entry Points for Trading Modeled by Geometric Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 827-843, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
    2. Godin, Frédéric & Lai, Van Son & Trottier, Denis-Alexandre, 2019. "Option pricing under regime-switching models: Novel approaches removing path-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 130-142.
    3. Shin-Yun Wang & Ming-Che Chuang & Shih-Kuei Lin & So-De Shyu, 2021. "Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 25-51, January.
    4. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    5. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    6. François, Pascal & Gauthier, Geneviève & Godin, Frédéric, 2014. "Optimal hedging when the underlying asset follows a regime-switching Markov process," European Journal of Operational Research, Elsevier, vol. 237(1), pages 312-322.
    7. Lu, Xiaoping & Putri, Endah R.M., 2020. "A semi-analytic valuation of American options under a two-state regime-switching economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    8. Jang, Bong-Gyu & Tae, Hyeon-Wuk, 2018. "Option pricing under regime switching: Integration over simplexes method," Finance Research Letters, Elsevier, vol. 24(C), pages 301-312.
    9. Godin, Frédéric & Trottier, Denis-Alexandre, 2021. "Option pricing in regime-switching frameworks with the Extended Girsanov Principle," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 116-129.
    10. Chun-Hung Chiu & Shui-Hung Hou & Xun Li & Wei Liu, 2017. "Real options approach for fashionable and perishable products using stock loan with regime switching," Annals of Operations Research, Springer, vol. 257(1), pages 357-377, October.
    11. Massimo Costabile & Arturo Leccadito & Ivar Massabó & Emilio Russo, 2014. "A reduced lattice model for option pricing under regime-switching," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 667-690, May.
    12. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    13. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    14. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    15. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    16. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    17. Chen, Ping & Yam, S.C.P., 2013. "Optimal proportional reinsurance and investment with regime-switching for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 871-883.
    18. Kai Zheng & Weidong Xu & Xili Zhang, 2023. "Multivariate Regime Switching Model Estimation and Asset Allocation," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 165-196, January.
    19. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    20. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:84:y:2016:i:c:p:50-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.