IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v22y2019i06ns0219024919500298.html
   My bibliography  Save this article

Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching

Author

Listed:
  • ZHIPING CHEN

    (School of Mathematics and Statistics, Xi’an Jiaotong University, Shaanxi 710049, P. R. China2Center for Optimization Technique and Quantitative Finance, Xi’an International Academy for Mathematics and Mathematical Technology, Shaanxi 710049, P. R. China)

  • LIYUAN WANG

    (School of Mathematics and Statistics, Xi’an Jiaotong University, Shaanxi 710049, P. R. China2Center for Optimization Technique and Quantitative Finance, Xi’an International Academy for Mathematics and Mathematical Technology, Shaanxi 710049, P. R. China)

  • PING CHEN

    (Department of Economics, The University of Melbourne, VIC 3010, Australia)

  • HAIXIANG YAO

    (School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, P. R. China)

Abstract

Using mean–variance (MV) criterion, this paper investigates a continuous-time defined contribution (DC) pension fund investment problem. The framework is constructed under a Markovian regime-switching market consisting of one bank account and multiple risky assets. The prices of the risky assets are governed by geometric Brownian motion while the accumulative contribution evolves according to a Brownian motion with drift and their correlation is considered. The market state is modeled by a Markovian chain and the random regime-switching is assumed to be independent of the underlying Brownian motions. The incorporation of the stochastic accumulative contribution and the correlations between the contribution and the prices of risky assets makes our problem harder to tackle. Luckily, based on appropriate Riccati-type equations and using the techniques of Lagrange multiplier and stochastic linear quadratic control, we derive the explicit expressions of the optimal strategy and efficient frontier. Further, two special cases with no contribution and no regime-switching, respectively, are discussed and the corresponding results are consistent with those results of Zhou & Yin [(2003) Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization 42 (4), 1466–1482] and Zhou & Li [(2000) Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization 42 (1), 19–33]. Finally, some numerical analyses based on real data from the American market are provided to illustrate the property of the optimal strategy and the effects of model parameters on the efficient frontier, which sheds light on our theoretical results.

Suggested Citation

  • Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
  • Handle: RePEc:wsi:ijtafx:v:22:y:2019:i:06:n:s0219024919500298
    DOI: 10.1142/S0219024919500298
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024919500298
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024919500298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    2. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    3. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    4. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    5. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2004. "Optimal design of the guarantee for defined contribution funds," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2239-2260, October.
    6. Paolo Battocchio & Francesco Menoncin, 2002. "Optimal Portfolio Strategies with Stochastic Wage Income and Inflation: The Case of a Defined Contribution Pension Plan," CeRP Working Papers 19, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    7. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    8. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    9. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    10. Hyeng Keun Koo, 1998. "Consumption and Portfolio Selection with Labor Income: A Continuous Time Approach," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 49-65, January.
    11. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    12. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    13. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    14. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    15. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    16. Paolo BATTOCCHIO, 2002. "Optimal Portfolio Strategies with Stochastic Wage Income : The Case of A defined Contribution Pension Plan," LIDAM Discussion Papers IRES 2002005, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    17. Liang, Zongxia & Ma, Ming, 2015. "Optimal dynamic asset allocation of pension fund in mortality and salary risks framework," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 151-161.
    18. Naik, Vasanttilak, 1993. "Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns," Journal of Finance, American Finance Association, vol. 48(5), pages 1969-1984, December.
    19. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    20. Yao, Haixiang & Chen, Ping & Li, Xun, 2016. "Multi-period defined contribution pension funds investment management with regime-switching and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 103-113.
    21. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    22. Zhiping Chen & Jia Liu & Yongchang Hui, 2017. "Recursive risk measures under regime switching applied to portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1457-1476, September.
    23. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    24. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    25. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    26. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    27. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    28. Huiling Wu, 2013. "Mean-Variance Portfolio Selection with a Stochastic Cash Flow in a Markov-switching Jump–Diffusion Market," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 918-934, September.
    29. Peter O. Christensen & Kasper Larsen, 2014. "Incomplete Continuous-Time Securities Markets with Stochastic Income Volatility," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 4(2), pages 247-285.
    30. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    31. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    32. Asprem, Mads, 1989. "Stock prices, asset portfolios and macroeconomic variables in ten European countries," Journal of Banking & Finance, Elsevier, vol. 13(4-5), pages 589-612, September.
    33. Henderson, Vicky, 2005. "Explicit solutions to an optimal portfolio choice problem with stochastic income," Journal of Economic Dynamics and Control, Elsevier, vol. 29(7), pages 1237-1266, July.
    34. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    35. Lars Peter Hansen & Thomas J Sargent, 2014. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 4, pages 83-143, World Scientific Publishing Co. Pte. Ltd..
    36. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.
    37. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148, April.
    38. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    39. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    40. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
    41. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2017. "Time-Inconsistent Stochastic Linear--Quadratic Control: Characterization and Uniqueness of Equilibrium," Post-Print hal-01139343, HAL.
    42. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2004. "Optimal design of the guarantee for defined contribution funds," ULB Institutional Repository 2013/7602, ULB -- Universite Libre de Bruxelles.
    43. Tang, Mei-Ling & Chen, Son-Nan & Lai, Gene C. & Wu, Ting-Pin, 2018. "Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 87-104.
    44. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    45. Tak Siu, 2012. "A BSDE approach to risk-based asset allocation of pension funds with regime switching," Annals of Operations Research, Springer, vol. 201(1), pages 449-473, December.
    46. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    47. He, Lin & Liang, Zongxia, 2015. "Optimal assets allocation and benefit outgo policies of DC pension plan with compulsory conversion claims," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 227-234.
    48. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    49. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Xu, 2020. "The optimal investment strategy of a DC pension plan under deposit loan spread and the O-U process," Papers 2005.10661, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Haixiang & Chen, Ping & Li, Xun, 2016. "Multi-period defined contribution pension funds investment management with regime-switching and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 103-113.
    2. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    3. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    4. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    5. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    6. Pengyu Wei & Charles Yang, 2023. "Optimal investment for defined-contribution pension plans under money illusion," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 729-753, August.
    7. Huang, Hong-Chih & Lee, Yung-Tsung, 2020. "A study of the differences among representative investment strategies," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 131-149.
    8. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    9. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    10. Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.
    11. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    12. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    13. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    14. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    15. Menoncin, Francesco & Vigna, Elena, 2017. "Mean–variance target-based optimisation for defined contribution pension schemes in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 172-184.
    16. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    17. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    18. Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
    19. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    20. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:22:y:2019:i:06:n:s0219024919500298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.