IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3110-d1194101.html
   My bibliography  Save this article

Almost Sure Exponential Stability of Uncertain Stochastic Hopfield Neural Networks Based on Subadditive Measures

Author

Listed:
  • Zhifu Jia

    (School of Sciences and Arts, Suqian University, Suqian 223800, China
    These authors contributed equally to this work.)

  • Cunlin Li

    (Ningxia Key Laboratory of Intelligent Information and Big Data Processing, Governance and Social Management Research Center of Northwest Ethnic Regions, North Minzu University, Yinchuan 750021, China
    School of Mathematical and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China
    These authors contributed equally to this work.)

Abstract

For this paper, we consider the almost sure exponential stability of uncertain stochastic Hopfield neural networks based on subadditive measures. Firstly, we deduce two corollaries, using the Itô–Liu formula. Then, we introduce the concept of almost sure exponential stability for uncertain stochastic Hopfield neural networks. Next, we investigate the almost sure exponential stability of uncertain stochastic Hopfield neural networks, using the Lyapunov method, Liu inequality, the Liu lemma, and exponential martingale inequality. In addition, we prove two sufficient conditions for almost sure exponential stability. Furthermore, we consider stabilization with linear uncertain stochastic perturbation and present some exceptional examples. Finally, our paper provides our conclusion.

Suggested Citation

  • Zhifu Jia & Cunlin Li, 2023. "Almost Sure Exponential Stability of Uncertain Stochastic Hopfield Neural Networks Based on Subadditive Measures," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3110-:d:1194101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zidong & Lauria, Stanislao & Fang, Jian’an & Liu, Xiaohui, 2007. "Exponential stability of uncertain stochastic neural networks with mixed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 62-72.
    2. Liu, Linna & Zhu, Quanxin, 2015. "Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 698-712.
    3. Weiyin Fei, 2014. "Optimal control of uncertain stochastic systems with Markovian switching and its applications to portfolio decisions," Papers 1401.2531, arXiv.org.
    4. Wang, Zidong & Fang, Jian’an & Liu, Xiaohui, 2008. "Global stability of stochastic high-order neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 388-396.
    5. Lu, Jun-Xiang & Ma, Yichen, 2008. "Mean square exponential stability and periodic solutions of stochastic delay cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1323-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhifu Jia & Cunlin Li, 2024. "Saddle-Point Equilibrium Strategy for Linear Quadratic Uncertain Stochastic Hybrid Differential Games Based on Subadditive Measures," Mathematics, MDPI, vol. 12(8), pages 1-15, April.
    2. Wei Ouyang & Kui Mei, 2023. "Quantitative Stability of Optimization Problems with Stochastic Constraints," Mathematics, MDPI, vol. 11(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zaitang & Yang, Qi-Gui, 2009. "Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 773-780.
    2. Feng, Wei & Yang, Simon X. & Wu, Haixia, 2009. "On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2095-2104.
    3. Lin, Yi-Kuei, 2010. "Reliability evaluation of a revised stochastic flow network with uncertain minimum time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1253-1258.
    4. Zhang, Jinhui & Shi, Peng & Qiu, Jiqing, 2008. "Robust stability criteria for uncertain neutral system with time delay and nonlinear uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 160-167.
    5. Shu, Huisheng & Wang, Zidong & Lü, Zengwei, 2009. "Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 490-505.
    6. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    7. Tan, Jianguo & Tan, Yahua & Guo, Yongfeng & Feng, Jianfeng, 2020. "Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "Strong convergence and almost sure exponential stability of balanced numerical approximations to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    9. Liu, Xiwei & Chen, Tianping, 2008. "Robust μ -stability for uncertain stochastic neural networks with unbounded time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2952-2962.
    10. Wan, Li & Zhou, Qinghua & Liu, Jie, 2017. "Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 68-72.
    11. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    12. Lu, Jun-Xiang & Ma, Yichen, 2008. "Mean square exponential stability and periodic solutions of stochastic delay cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1323-1331.
    13. Feng, Wei & Yang, Simon X. & Fu, Wei & Wu, Haixia, 2009. "Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 414-424.
    14. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    15. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    16. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    17. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    18. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.
    19. Liu, Duyu & Zhong, Shouming & Xiong, Lianglin, 2009. "On robust stability of uncertain neutral systems with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2332-2339.
    20. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3110-:d:1194101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.