IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.5247.html
   My bibliography  Save this paper

Portfolio Optimization in Affine Models with Markov Switching

Author

Listed:
  • Marcos Escobar
  • Daniela Neykova
  • Rudi Zagst

Abstract

We consider a stochastic factor financial model where the asset price process and the process for the stochastic factor depend on an observable Markov chain and exhibit an affine structure. We are faced with a finite time investment horizon and derive optimal dynamic investment strategies that maximize the investor's expected utility from terminal wealth. To this aim we apply Merton's approach, as we are dealing with an incomplete market. Based on the semimartingale characterization of Markov chains we first derive the HJB equations, which in our case correspond to a system of coupled non-linear PDEs. Exploiting the affine structure of the model, we derive simple expressions for the solution in the case with no leverage, i.e. no correlation between the Brownian motions driving the asset price and the stochastic factor. In the presence of leverage we propose a separable ansatz, which leads to explicit solutions in this case as well. General verification results are also proved. The results are illustrated for the special case of a Markov modulated Heston model.

Suggested Citation

  • Marcos Escobar & Daniela Neykova & Rudi Zagst, 2014. "Portfolio Optimization in Affine Models with Markov Switching," Papers 1403.5247, arXiv.org.
  • Handle: RePEc:arx:papers:1403.5247
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.5247
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Luz Rocío Sotomayor & Abel Cadenillas, 2009. "Explicit Solutions Of Consumption‐Investment Problems In Financial Markets With Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 251-279, April.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    6. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    7. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    8. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    9. Garland Durham & Yang-Ho Park, 2013. "Beyond Stochastic Volatility and Jumps in Returns and Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 107-121, January.
    10. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    11. Robert Elliott & Tak Kuen Siu & Leunglung Chan, 2007. "Pricing Volatility Swaps Under Heston's Stochastic Volatility Model with Regime Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 41-62.
    12. Sovan Mitra, 2010. "Regime switching stochastic volatility option pricing," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 1(2), pages 213-242.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    14. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    2. Sühan Altay & Katia Colaneri & Zehra Eksi, 2021. "Optimal convergence trading with unobservable pricing errors," Annals of Operations Research, Springer, vol. 299(1), pages 133-161, April.
    3. Lioudmila Vostrikova & Yuchao Dong, 2018. "Utility maximization for Lévy switching models," Working Papers hal-01844635, HAL.
    4. Lioudmila Vostrikova & Yuchao Dong, 2018. "Utility maximization for L{\'e}vy switching models," Papers 1807.08982, arXiv.org.
    5. Sühan Altay & Katia Colaneri & Zehra Eksi, 2018. "Pairs Trading Under Drift Uncertainty And Risk Penalization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-24, November.
    6. Christoph Belak & Sören Christensen & Olaf Menkens, 2016. "Worst-Case Portfolio Optimization In A Market With Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-36, March.
    7. Suhan Altay & Katia Colaneri & Zehra Eksi, 2019. "Optimal Convergence Trading with Unobservable Pricing Errors," Papers 1910.01438, arXiv.org, revised Oct 2019.
    8. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    2. M. Escobar & D. Neykova & R. Zagst, 2017. "HARA utility maximization in a Markov-switching bond–stock market," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1715-1733, November.
    3. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    4. Jianmin Shi, 2020. "Optimal control of multiple Markov switching stochastic system with application to portfolio decision," Papers 2010.16102, arXiv.org.
    5. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    6. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    7. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.
    8. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Tendencias y perspectivas de la ciencia financiera: Un artículo de revisión," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    9. Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.
    10. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    11. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    12. Jieting Chen & Yuichiro Kawaguchi, 2018. "Multi-Factor Asset-Pricing Models under Markov Regime Switches: Evidence from the Chinese Stock Market," IJFS, MDPI, vol. 6(2), pages 1-19, May.
    13. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    14. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    15. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    16. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2014. "Partial information about contagion risk, self-exciting processes and portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 18-36.
    17. Jan Kallsen & Johannes Muhle-Karbe, 2009. "Utility maximization in models with conditionally independent increments," Papers 0911.3608, arXiv.org.
    18. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    19. Traian Pirvu & Huayue Zhang, 2013. "Investment and Consumption with Regime-Switching Discount Rates," Papers 1303.1248, arXiv.org.
    20. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.5247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.