IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.6025.html
   My bibliography  Save this paper

An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality

Author

Listed:
  • Iosif Pinelis

Abstract

A certain spectrum, indexed by a\in[0,\infty], of upper bounds P_a(X;x) on the tail probability P(X\geq x), with P_0(X;x)=P(X\geq x) and P_\infty(X;x) being the best possible exponential upper bound on P(X\geq x), is shown to be stable and monotonic in a, x, and X, where x is a real number and X is a random variable. The bounds P_a(X;x) are optimal values in certain minimization problems. The corresponding spectrum, also indexed by a\in[0,\infty], of upper bounds Q_a(X;p) on the (1-p)-quantile of X is stable and monotonic in a, p, and X, with Q_0(X;p) equal the largest (1-p)-quantile of X. In certain sense, the quantile bounds Q_a(X;p) are usually close enough to the true quantiles Q_0(X;p). Moreover, Q_a(X;p) is subadditive in X if a\geq 1, as well as positive-homogeneous and translation-invariant, and thus is a so-called coherent measure of risk. A number of other useful properties of the bounds P_a(X;x) and Q_a(X;p) are established. In particular, quite similarly to the bounds P_a(X;x) on the tail probabilities, the quantile bounds Q_a(X;p) are the optimal values in certain minimization problems. This allows for a comparatively easy incorporation of the bounds P_a(X;x) and Q_a(X;p) into more specialized optimization problems. It is shown that the minimization problems for which P_a(X;x) and Q_a(X;p) are the optimal values are in a certain sense dual to each other; in the case a=\infty this corresponds to the bilinear Legendre--Fenchel duality. In finance, the (1-p)-quantile Q_0(X;p) is known as the value-at-risk (VaR), whereas the value of Q_1(X;p) is known as the conditional value-at-risk (CVaR) and also as the expected shortfall (ES), average value-at-risk (AVaR), and expected tail loss (ETL). It is shown that the quantile bounds Q_a(X;p) can be used as measures of economic inequality. The spectrum parameter, a, may be considered an index of sensitivity to risk/inequality.

Suggested Citation

  • Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
  • Handle: RePEc:arx:papers:1310.6025
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.6025
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. A. Atkinson, 2008. "More on the measurement of inequality," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(3), pages 277-283, September.
    3. Fishburn, Peter C., 1976. "Continua of stochastic dominance relations for bounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 295-311, December.
    4. Dufour, J-M. & Hallin, M., 1990. "Improved Eaton Bounds for Linear Combinations of Bounded Random Variables , with Statistical Applications," Papers 9104, Universite Libre de Bruxelles - C.E.M.E..
    5. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    6. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    7. Fishburn, Peter C., 1980. "Continua of stochastic dominance relations for unbounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 7(3), pages 271-285, December.
    8. Philippe Delquié & Alessandra Cillo, 2006. "Disappointment without prior expectation: a unifying perspective on decision under risk," Journal of Risk and Uncertainty, Springer, vol. 33(3), pages 197-215, December.
    9. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    10. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    11. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    12. De Giorgi, Enrico, 2005. "Reward-risk portfolio selection and stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 895-926, April.
    13. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    14. Sergio Ortobelli & Svetlozar Rachev & Haim Shalit & Frank Fabozzi, 2009. "Orderings and Probability Functionals Consistent with Preferences," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 81-102.
    15. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    16. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    17. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iosif Pinelis, 2014. "An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent Measures of Financial Risk and Economic Inequality," Risks, MDPI, vol. 2(3), pages 1-44, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinelis, Iosif, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," MPRA Paper 51361, University Library of Munich, Germany.
    2. Iosif Pinelis, 2014. "An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent Measures of Financial Risk and Economic Inequality," Risks, MDPI, vol. 2(3), pages 1-44, September.
    3. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    4. Sergio Ortobelli & Svetlozar Rachev & Haim Shalit & Frank Fabozzi, 2009. "Orderings and Probability Functionals Consistent with Preferences," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 81-102.
    5. Aaberge, Rolf & Havnes, Tarjei & Mogstad, Magne, 2013. "A Theory for Ranking Distribution Functions," IZA Discussion Papers 7738, Institute of Labor Economics (IZA).
    6. Rolf Aaberge & Tarjei Havnes & Magne Mogstad, 2021. "Ranking intersecting distribution functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 639-662, September.
    7. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    8. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    9. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    10. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    11. Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
    12. Alexander Vinel & Pavlo A. Krokhmal, 2017. "Certainty equivalent measures of risk," Annals of Operations Research, Springer, vol. 249(1), pages 75-95, February.
    13. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    14. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    15. Pflug Georg Ch., 2006. "On distortion functionals," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-16, July.
    16. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    17. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    18. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    19. Rolf Aaberge & Magne Mogstad, 2011. "Robust inequality comparisons," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(3), pages 353-371, September.
    20. Rania HENTATI & Jean-Luc PRIGENT, 2010. "Structured Portfolio Analysis under SharpeOmega Ratio," EcoMod2010 259600073, EcoMod.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.6025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.