IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v165y2009i1p67-9510.1007-s10479-008-0387-1.html
   My bibliography  Save this article

Risk preference modeling with conditional average: an application to portfolio optimization

Author

Listed:
  • Adam Krzemienowski

Abstract

The paper introduces a new risk measure called Conditional Average (CAVG), which was designed to cover typical attitudes towards risk for any type of distribution. It can be viewed as a generalization of Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), two commonly used risk measures. The preference structure induced by CAVG has the interpretation in Yaari’s dual theory of choice under risk and relates to Tversky and Kahneman’s cumulative prospect theory. The measure is based on the new stochastic ordering called dual prospect stochastic dominance, which can be considered as a dual stochastic ordering to recently developed prospect stochastic dominance. In general, CAVG translates into a nonconvex quadratic programming problem, but in the case of a finite probability space it can also be expressed as a mixed-integer program. The paper also presents the results of computational studies designed to assess the preference modeling capabilities of the measure. The experimental analysis was performed on the asset allocation problem built on historical values of S&P 500 sub-industry indexes. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
  • Handle: RePEc:spr:annopr:v:165:y:2009:i:1:p:67-95:10.1007/s10479-008-0387-1
    DOI: 10.1007/s10479-008-0387-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0387-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0387-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    3. repec:bla:econom:v:50:y:1983:i:197:p:3-17 is not listed on IDEAS
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    8. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    9. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    10. Wang, Shaun S. & Young, Virginia R., 1998. "Ordering risks: Expected utility theory versus Yaari's dual theory of risk," Insurance: Mathematics and Economics, Elsevier, vol. 22(2), pages 145-161, June.
    11. Peter C. Fishburn, 1980. "Stochastic Dominance and Moments of Distributions," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 94-100, February.
    12. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    13. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    14. Levy, Haim & Wiener, Zvi, 1998. "Stochastic Dominance and Prospect Dominance with Subjective Weighting Functions," Journal of Risk and Uncertainty, Springer, vol. 16(2), pages 147-163, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    2. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
    3. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    4. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    5. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    6. Mafusalov, Alexander & Uryasev, Stan, 2016. "CVaR (superquantile) norm: Stochastic case," European Journal of Operational Research, Elsevier, vol. 249(1), pages 200-208.
    7. K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    2. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    3. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    4. Levy, Moshe, 2009. "Almost Stochastic Dominance and stocks for the long run," European Journal of Operational Research, Elsevier, vol. 194(1), pages 250-257, April.
    5. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    6. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    7. Haim Levy & Enrico G. De Giorgi & Thorsten Hens, 2012. "Two Paradigms and Nobel Prizes in Economics: a Contradiction or Coexistence?," European Financial Management, European Financial Management Association, vol. 18(2), pages 163-182, March.
    8. Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
    9. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    10. van Bruggen, Paul & Laeven, Roger J. A. & van de Kuilen, Gijs, 2024. "Higher-Order Risk Attitudes for Non-Expected Utility," Discussion Paper 2024-019, Tilburg University, Center for Economic Research.
    11. Chan, Raymond H. & Chow, Sheung-Chi & Guo, Xu & Wong, Wing-Keung, 2022. "Central moments, stochastic dominance, moment rule, and diversification with an application," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Pflug Georg Ch., 2006. "On distortion functionals," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-16, July.
    13. Denis Chetverikov & Yukun Liu & Aleh Tsyvinski, 2022. "Weighted-average quantile regression," Papers 2203.03032, arXiv.org.
    14. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    15. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
    16. Levy, Haim & Wiener, Zvi, 2013. "Prospect theory and utility theory: Temporary versus permanent attitude toward risk," Journal of Economics and Business, Elsevier, vol. 68(C), pages 1-23.
    17. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    18. Eeckhoudt, Louis R. & Laeven, Roger J.A. & Schlesinger, Harris, 2020. "Risk apportionment: The dual story," Journal of Economic Theory, Elsevier, vol. 185(C).
    19. Levy, Haim & Levy, Moshe, 2002. "Experimental test of the prospect theory value function: A stochastic dominance approach," Organizational Behavior and Human Decision Processes, Elsevier, vol. 89(2), pages 1058-1081, November.
    20. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:165:y:2009:i:1:p:67-95:10.1007/s10479-008-0387-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.