IDEAS home Printed from https://ideas.repec.org/p/mtl/montec/9224.html
   My bibliography  Save this paper

Improved Eaton Bounds for Linear Combinations of Bounded Random Variables with Statistical Applications

Author

Listed:
  • Dufour, J.M.
  • Hallin, M.

Abstract

The problem of evaluating tail probabilities for linear combinations of independent, possibly nonidentically distributed, bounded random variables arises in various statistical contexts, mainly connected with nonparametric inference. A remarkable inequality on such tail probabilities has been established by Eaton. The significance of Eaton’s inequality is substantiated by a recent result of Pinelis showing that the minimum BEPof Eaton’s bound BEand a traditional Chebyshev bound yields an inequality that is optimal within a fairly general class of bounds. Eaton’s bound, however, is not directly operational, because it is not explicit; apparently, it never has been studied numerically, and its many potential statistical applications have not yet been considered. A simpler inequality recently proposed by Edelman for linear combinations of iid Bernoulli variables is also considered, but it appears considerably less tight than Eaton’s original bound. This article has three main objectives. First, we put Eaton’s exact bound BEinto numerically tractable form and tabulate it, along with BEP, which makes them readily applicable; the resulting conservative critical values are provided for standard significance levels. Second, we show how further improvement can be obtained over the Eaton-Pinelis bound BEPif the number n of independent variables in the linear combination under study is taken into account. The resulting improved Eaton bounds B+EPand the corresponding conservative critical values are also tabulated for standard significance levels and most empirically relevant values of n. Finally, various statistical applications are discussed: permutation t tests against location shifts, permutation t tests against regression or trend, permutation tests against serial correlation, and linear signed rank tests against various alternatives, all in the presence of possibly nonidentically distributed (e.g. heteroscedastic) data. For permutation t tests and linear signed rank tests
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Dufour, J.M. & Hallin, M., 1992. "Improved Eaton Bounds for Linear Combinations of Bounded Random Variables with Statistical Applications," Cahiers de recherche 9224, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  • Handle: RePEc:mtl:montec:9224
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dufour, Jean-Marie & Farhat, Abdeljelil & Hallin, Marc, 2006. "Distribution-free bounds for serial correlation coefficients in heteroskedastic symmetric time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 123-142, January.
    2. Karl H.Schlag, 2015. "Who gives Direction to Statistical Testing? Best Practice meets Mathematically Correct Tests," Vienna Economics Papers vie1512, University of Vienna, Department of Economics.
    3. Rustam Ibragimov & Jihyun Kim & Anton Skrobotov, 2020. "New robust inference for predictive regressions," Papers 2006.01191, arXiv.org, revised Mar 2023.
    4. Gossner, Olivier & Schlag, Karl H., 2013. "Finite-sample exact tests for linear regressions with bounded dependent variables," Journal of Econometrics, Elsevier, vol. 177(1), pages 75-84.
    5. Iosif Pinelis, 2014. "An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent Measures of Financial Risk and Economic Inequality," Risks, MDPI, vol. 2(3), pages 1-44, September.
    6. Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
    7. Oliver Gossner & Karl Schlag, 2012. "Finite Sample Exact tests for Linear," Vienna Economics Papers 1201, University of Vienna, Department of Economics.
    8. Donald Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Yale School of Management Working Papers amz2581, Yale School of Management, revised 01 Jul 2005.
    9. Donald Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Yale School of Management Working Papers amz2581, Yale School of Management, revised 01 Jul 2005.
    10. Karl H.Schlag, 2015. "Who gives Direction to Statistical Testing? Best Practice meets Mathematically Correct Tests," Vienna Economics Papers 1512, University of Vienna, Department of Economics.
    11. Pinelis, Iosif, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," MPRA Paper 51361, University Library of Munich, Germany.
    12. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    13. Brown, Donald & Ibragimov, Rustam, 2019. "Sign tests for dependent observations," Econometrics and Statistics, Elsevier, vol. 10(C), pages 1-8.
    14. Karl Schlag & Olivier Gossner, 2010. "Finite sample nonparametric tests for linear regressions," Economics Working Papers 1212, Department of Economics and Business, Universitat Pompeu Fabra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montec:9224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sharon BREWER (email available below). General contact details of provider: https://edirc.repec.org/data/cdmtlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.