IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1309.3102.html
   My bibliography  Save this paper

A nested factor model for non-linear dependences in stock returns

Author

Listed:
  • R'emy Chicheportiche
  • Jean-Philippe Bouchaud

Abstract

The aim of our work is to propose a natural framework to account for all the empirically known properties of the multivariate distribution of stock returns. We define and study a "nested factor model", where the linear factors part is standard, but where the log-volatility of the linear factors and of the residuals are themselves endowed with a factor structure and residuals. We propose a calibration procedure to estimate these log-vol factors and the residuals. We find that whereas the number of relevant linear factors is relatively large (10 or more), only two or three log-vol factors emerge in our analysis of the data. In fact, a minimal model where only one log-vol factor is considered is already very satisfactory, as it accurately reproduces the properties of bivariate copulas, in particular the dependence of the medial-point on the linear correlation coefficient, as reported in Chicheportiche and Bouchaud (2012). We have tested the ability of the model to predict Out-of-Sample the risk of non-linear portfolios, and found that it performs significantly better than other schemes.

Suggested Citation

  • R'emy Chicheportiche & Jean-Philippe Bouchaud, 2013. "A nested factor model for non-linear dependences in stock returns," Papers 1309.3102, arXiv.org.
  • Handle: RePEc:arx:papers:1309.3102
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1309.3102
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. R'emy Chicheportiche, 2013. "Non-linear dependences in finance," Papers 1309.5073, arXiv.org.
    3. J. P. Bouchaud & M. Potters, 2009. "Financial Applications of Random Matrix Theory: a short review," Papers 0910.1205, arXiv.org.
    4. M. Potters & J. P. Bouchaud & L. Laloux, 2005. "Financial Applications of Random Matrix Theory: Old Laces and New Pieces," Papers physics/0507111, arXiv.org.
    5. repec:dau:papers:123456789/10898 is not listed on IDEAS
    6. Peter Christoffersen & Mathieu Fournier & Kris Jacobs, 2018. "The Factor Structure in Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 595-637.
    7. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2010. "The joint distribution of stock returns is not elliptical," Papers 1009.1100, arXiv.org, revised Jun 2012.
    8. Raffaello Morales & T. Di Matteo & Tomaso Aste, 2013. "Dependency Structure and Scaling Properties of Financial Time Series Are Related," Papers 1309.2411, arXiv.org.
    9. Rémy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The joint distribution of stock returns is not elliptical," Post-Print hal-00703720, HAL.
    10. M. Tumminello & F. Lillo & R. N. Mantegna, 2007. "Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance," Papers 0710.0576, arXiv.org.
    11. Rémy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The Joint Distribution Of Stock Returns Is Not Elliptical," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-23.
    12. Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Correlation structure of extreme stock returns," Papers cond-mat/0006034, arXiv.org, revised Jan 2001.
    13. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    14. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169.
    15. P. Cizeau & M. Potters & J-P. Bouchaud, 2001. "Correlation structure of extreme stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 217-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    2. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    3. Simon Hediger & Jeffrey Näf & Marc S. Paolella & Paweł Polak, 2023. "Heterogeneous tail generalized common factor modeling," Digital Finance, Springer, vol. 5(2), pages 389-420, June.
    4. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    5. Jonathan Raimana Chan & Thomas Huckle & Antoine Jacquier & Aitor Muguruza, 2021. "Portfolio optimisation with options," Papers 2111.12658, arXiv.org, revised Sep 2024.
    6. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    7. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    8. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    9. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    10. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe de Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02354596, HAL.
    11. Petr Koldanov & Nina Lozgacheva, 2016. "Multiple Testing Of Sign Symmetry For Stock Return Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-14, December.
    12. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2014. "Partial correlation analysis: Applications for financial markets," Papers 1402.1405, arXiv.org.
    13. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.
    14. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Papers 1706.04210, arXiv.org, revised Dec 2017.
    15. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    16. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe De Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Documents de travail du Centre d'Economie de la Sorbonne 19022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Bücher Axel & Jaser Miriam & Min Aleksey, 2021. "Detecting departures from meta-ellipticity for multivariate stationary time series," Dependence Modeling, De Gruyter, vol. 9(1), pages 121-140, January.
    18. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe de Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Post-Print halshs-02354596, HAL.
    19. Koldanov, A. & Koldanov, P. & Semenov, D., 2021. "Confidence set for connected stocks of stock market," Journal of the New Economic Association, New Economic Association, vol. 50(2), pages 12-34.
    20. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.3102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.