IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0710.0576.html
   My bibliography  Save this paper

Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance

Author

Listed:
  • M. Tumminello
  • F. Lillo
  • R. N. Mantegna

Abstract

The problem of filtering information from large correlation matrices is of great importance in many applications. We have recently proposed the use of the Kullback-Leibler distance to measure the performance of filtering algorithms in recovering the underlying correlation matrix when the variables are described by a multivariate Gaussian distribution. Here we use the Kullback-Leibler distance to investigate the performance of filtering methods based on Random Matrix Theory and on the shrinkage technique. We also present some results on the application of the Kullback-Leibler distance to multivariate data which are non Gaussian distributed.

Suggested Citation

  • M. Tumminello & F. Lillo & R. N. Mantegna, 2007. "Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance," Papers 0710.0576, arXiv.org.
  • Handle: RePEc:arx:papers:0710.0576
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0710.0576
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    2. Gautier Marti, 2019. "CorrGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial Networks," Papers 1910.09504, arXiv.org, revised Dec 2019.
    3. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    4. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    5. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    6. Contreras-Reyes, Javier E., 2014. "Asymptotic form of the Kullback–Leibler divergence for multivariate asymmetric heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 200-208.
    7. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2013. "A nested factor model for non-linear dependences in stock returns," Papers 1309.3102, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0710.0576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.