IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0507111.html
   My bibliography  Save this paper

Financial Applications of Random Matrix Theory: Old Laces and New Pieces

Author

Listed:
  • M. Potters
  • J. P. Bouchaud
  • L. Laloux

Abstract

This contribution to the proceedings of the Cracow meeting on `Applications of Random Matrix Theory' summarizes a series of studies, some old and others more recent on financial applications of Random Matrix Theory (RMT). We first review some early results in that field, with particular emphasis on the applications of correlation cleaning to portfolio optimisation, and discuss the extension of the Marcenko-Pastur (MP) distribution to a non trivial `true' underlying correlation matrix. We then present new results concerning different problems that arise in a financial context: (a) the generalisation of the MP result to the case of an empirical correlation matrix (ECM) constructed using exponential moving averages, for which we give a new elegant derivation (b) the specific dynamics of the `market' eigenvalue and its associated eigenvector, which defines an interesting Ornstein-Uhlenbeck process on the unit sphere and (c) the problem of the dependence of ECM's on the observation frequency of the returns and its interpretation in terms of lagged cross-influences.

Suggested Citation

  • M. Potters & J. P. Bouchaud & L. Laloux, 2005. "Financial Applications of Random Matrix Theory: Old Laces and New Pieces," Papers physics/0507111, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0507111
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0507111
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0507111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.