IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1208.6305.html
   My bibliography  Save this paper

Kinetic models for the trading of goods

Author

Listed:
  • G. Toscani
  • C. Brugna
  • S. Demichelis

Abstract

In this paper we introduce kinetic equations for the evolution of the probability distribution of two goods among a huge population of agents. The leading idea is to describe the trading of these goods by means of some fundamental rules in price theory, in particular by using Cobb-Douglas utility functions for the binary exchange, and the Edgeworth box for the description of the common exchange area in which utility is increasing for both agents. This leads to a Boltzmann-type equation in which the post-interaction variables depend in a nonlinear way from the pre-interaction ones. Other models will be derived, by suitably linearizing this Boltzmann equation. In presence of uncertainty in the exchanges, it is shown that the solution to some of the linearized kinetic equations develop Pareto tails, where the Pareto index depends on the ratio between the gain and the variance of the uncertainty. In particular, the result holds true for the solution of a drift-diffusion equation of Fokker-Planck type, obtained from the linear Boltzmann equation as the limit of quasi-invariant trades.

Suggested Citation

  • G. Toscani & C. Brugna & S. Demichelis, 2012. "Kinetic models for the trading of goods," Papers 1208.6305, arXiv.org.
  • Handle: RePEc:arx:papers:1208.6305
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1208.6305
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David D. Friedman, 1990. "Price Theory: An Intermediate Text," Online economics textbooks, SUNY-Oswego, Department of Economics, number prin13.
    2. Düring, B. & Toscani, G., 2007. "Hydrodynamics from kinetic models of conservative economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 493-506.
    3. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    4. Arnab Chatterjee & Bikas K. Chakrabarti & Robin B. Stinchcombe, 2005. "Master equation for a kinetic model of trading market and its analytic solution," Papers cond-mat/0501413, arXiv.org, revised Aug 2005.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    7. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    8. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    9. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "Kinetic equations modelling wealth redistribution: A comparison of approaches," CoFE Discussion Papers 08/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    10. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    11. Gupta, Abhijit Kar, 2006. "Money exchange model and a general outlook," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 634-640.
    12. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    13. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 267-276, March.
    14. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    2. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    3. Düring, Bertram & Toscani, Giuseppe, 2008. "International and domestic trading and wealth distribution," CoFE Discussion Papers 08/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    5. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    6. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    7. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    8. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-17.
    9. Torsten Trimborn & Lorenzo Pareschi & Martin Frank, 2017. "Portfolio Optimization and Model Predictive Control: A Kinetic Approach," Papers 1711.03291, arXiv.org, revised Feb 2019.
    10. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    11. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    12. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    13. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    14. Gualandi, Stefano & Toscani, Giuseppe, 2017. "Pareto tails in socio-economic phenomena: A kinetic description," Economics Discussion Papers 2017-111, Kiel Institute for the World Economy (IfW Kiel).
    15. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    16. Trimborn, Torsten & Frank, Martin & Martin, Stephan, 2018. "Mean field limit of a behavioral financial market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 613-631.
    17. Düring, B. & Toscani, G., 2007. "Hydrodynamics from kinetic models of conservative economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 493-506.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    19. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2009. "Microeconomics of the ideal gas like market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4151-4158.
    20. Toscani, Giuseppe, 2016. "Kinetic and mean field description of Gibrat’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 802-811.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1208.6305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.