IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v505y2018icp613-631.html
   My bibliography  Save this article

Mean field limit of a behavioral financial market model

Author

Listed:
  • Trimborn, Torsten
  • Frank, Martin
  • Martin, Stephan

Abstract

In the past decade there has been a growing interest in agent-based econophysical financial market models. The goal of these models is to gain further insights into stylized facts of financial data. We derive the mean field limit of the econophysical Cross model (Cross, 2005) and show that the kinetic limit is a good approximation of the original model. Our kinetic model is able to replicate some of the most prominent stylized facts, namely fat-tails of asset returns, uncorrelated stock price returns and volatility clustering. Interestingly, psychological misperceptions of investors can be accounted to be the origin of the appearance of stylized facts. The mesoscopic model allows us to study the model analytically. We derive steady state solutions and entropy bounds of the deterministic skeleton. These first analytical results already guide us to explanations for the complex dynamics of the model.

Suggested Citation

  • Trimborn, Torsten & Frank, Martin & Martin, Stephan, 2018. "Mean field limit of a behavioral financial market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 613-631.
  • Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:613-631
    DOI: 10.1016/j.physa.2018.03.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118303984
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Colander & H. Follmer & A. Haas & M. Goldberg & K. Juselius & A. Kirman & T. Lux & B. Sloth, 2010. "The Financial Crisis and the Systemic Failure of Academic Economics," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 6.
    2. Egenter, E. & Lux, T. & Stauffer, D., 1999. "Finite-size effects in Monte Carlo simulations of two stock market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 250-256.
    3. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    4. Harbir Lamba & Tim Seaman, 2008. "Market Statistics Of A Psychology-Based Heterogeneous Agent Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(07), pages 717-737.
    5. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    9. R. Cross & M. Grinfeld & H. Lamba & T. Seaman, 2007. "Stylized facts from a threshold-based heterogeneous agent model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 213-218, May.
    10. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    11. Roberto Veneziani & Luca Zamparelli & Reiner Franke & Frank Westerhoff, 2017. "Taking Stock: A Rigorous Modelling Of Animal Spirits In Macroeconomics," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1152-1182, December.
    12. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    13. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    14. R. Kohl, 1997. "The Influence of the Number of Different Stocks on the Levy–Levy–Solomon Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 1309-1316.
    15. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    16. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    17. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    18. Zschischang, Elmar & Lux, Thomas, 2001. "Some new results on the Levy, Levy and Solomon microscopic stock market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 563-573.
    19. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    20. Torsten Trimborn & Lorenzo Pareschi & Martin Frank, 2017. "Portfolio Optimization and Model Predictive Control: A Kinetic Approach," Papers 1711.03291, arXiv.org, revised Feb 2019.
    21. Stanley, H.E & Amaral, L.A.N & Canning, D & Gopikrishnan, P & Lee, Y & Liu, Y, 1999. "Econophysics: Can physicists contribute to the science of economics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 156-169.
    22. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "Kinetic equations modelling wealth redistribution: A comparison of approaches," CoFE Discussion Papers 08/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    23. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    24. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    25. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    2. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Martin Frank & Stephan Martin, 2017. "Mean Field Limit of a Behavioral Financial Market Model," Papers 1711.02573, arXiv.org.
    2. Torsten Trimborn & Lorenzo Pareschi & Martin Frank, 2017. "Portfolio Optimization and Model Predictive Control: A Kinetic Approach," Papers 1711.03291, arXiv.org, revised Feb 2019.
    3. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    4. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    5. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2018. "Simulation of Stylized Facts in Agent-Based Computational Economic Market Models," Papers 1812.02726, arXiv.org, revised Nov 2019.
    6. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    7. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
    8. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    9. Maximilian Beikirch & Torsten Trimborn, 2020. "Novel Insights in the Levy-Levy-Solomon Agent-Based Economic Market Model," Papers 2002.10222, arXiv.org.
    10. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    11. Torsten Trimborn, 2018. "A Macroscopic Portfolio Model: From Rational Agents to Bounded Rationality," Papers 1805.11036, arXiv.org, revised Oct 2018.
    12. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    13. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    14. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    16. G. Toscani & C. Brugna & S. Demichelis, 2012. "Kinetic models for the trading of goods," Papers 1208.6305, arXiv.org.
    17. Anufriev, Mikhail & Bottazzi, Giulio & Pancotto, Francesca, 2006. "Equilibria, stability and asymptotic dominance in a speculative market with heterogeneous traders," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1787-1835.
    18. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    19. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2011. "The dynamic behaviour of asset prices in disequilibrium: a survey," International Journal of Behavioural Accounting and Finance, Inderscience Enterprises Ltd, vol. 2(2), pages 101-139.
    20. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:613-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.