IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v335y2004i1p155-163.html
   My bibliography  Save this article

Pareto law in a kinetic model of market with random saving propensity

Author

Listed:
  • Chatterjee, Arnab
  • K. Chakrabarti, Bikas
  • Manna, S.S

Abstract

We have numerically simulated the ideal-gas models of trading markets, where each agent is identified with a gas molecule and each trading as an elastic or money-conserving two-body collision. Unlike in the ideal gas, we introduce (quenched) saving propensity of the agents, distributed widely between the agents (0⩽λ<1). The system remarkably self-organizes to a critical Pareto distribution of money P(m)∼m−(ν+1) with ν≃1. We analyze the robustness (universality) of the distribution in the model. We also argue that although the fractional saving ingredient is a bit unnatural one in the context of gas models, our model is the simplest so far, showing self-organized criticality, and combines two century-old distributions: Gibbs (1901) and Pareto (1897) distributions.

Suggested Citation

  • Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
  • Handle: RePEc:eee:phsmap:v:335:y:2004:i:1:p:155-163
    DOI: 10.1016/j.physa.2003.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103011142
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:335:y:2004:i:1:p:155-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.