IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.03291.html
   My bibliography  Save this paper

Portfolio Optimization and Model Predictive Control: A Kinetic Approach

Author

Listed:
  • Torsten Trimborn
  • Lorenzo Pareschi
  • Martin Frank

Abstract

In this paper, we introduce a large system of interacting financial agents in which each agent is faced with the decision of how to allocate his capital between a risky stock or a risk-less bond. The investment decision of investors, derived through an optimization, drives the stock price. The model has been inspired by the econophysical Levy-Levy-Solomon model (Economics Letters, 45). The goal of this work is to gain insights into the stock price and wealth distribution. We especially want to discover the causes for the appearance of power-laws in financial data. We follow a kinetic approach similar to (D. Maldarella, L. Pareschi, Physica A, 391) and derive the mean field limit of our microscopic agent dynamics. The novelty in our approach is that the financial agents apply model predictive control (MPC) to approximate and solve the optimization of their utility function. Interestingly, the MPC approach gives a mathematical connection between the two opponent economic concepts of modeling financial agents to be rational or boundedly rational. Furthermore, this is to our knowledge the first kinetic portfolio model which considers a wealth and stock price distribution simultaneously. Due to our kinetic approach, we can study the wealth and price distribution on a mesoscopic level. The wealth distribution is characterized by a lognormal law. For the stock price distribution, we can either observe a lognormal behavior in the case of long-term investors or a power-law in the case of high-frequency trader. Furthermore, the stock return data exhibits a fat-tail, which is a well known characteristic of real financial data.

Suggested Citation

  • Torsten Trimborn & Lorenzo Pareschi & Martin Frank, 2017. "Portfolio Optimization and Model Predictive Control: A Kinetic Approach," Papers 1711.03291, arXiv.org, revised Feb 2019.
  • Handle: RePEc:arx:papers:1711.03291
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.03291
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. D. Colander & H. Follmer & A. Haas & M. Goldberg & K. Juselius & A. Kirman & T. Lux & B. Sloth, 2010. "The Financial Crisis and the Systemic Failure of Academic Economics," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 6.
    3. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    4. Egenter, E. & Lux, T. & Stauffer, D., 1999. "Finite-size effects in Monte Carlo simulations of two stock market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 250-256.
    5. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    6. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    7. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    10. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    11. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    12. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    13. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    14. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    15. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    16. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    17. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    18. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    19. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    20. Zschischang, Elmar & Lux, Thomas, 2001. "Some new results on the Levy, Levy and Solomon microscopic stock market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 563-573.
    21. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    22. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    23. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "Kinetic equations modelling wealth redistribution: A comparison of approaches," CoFE Discussion Papers 08/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    24. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    25. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    26. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    27. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    28. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Frank & Michael Herty & Torsten Trimborn, 2019. "Microscopic Derivation of Mean Field Game Models," Papers 1910.13534, arXiv.org.
    2. Torsten Trimborn & Martin Frank & Stephan Martin, 2017. "Mean Field Limit of a Behavioral Financial Market Model," Papers 1711.02573, arXiv.org.
    3. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    4. Hu, Chunhua & Feng, Huarong, 2024. "Kinetic model for asset allocation with strategy switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    5. Wang, Lingling & Lai, Shaoyong & Sun, Rongmei, 2022. "Optimal control about multi-agent wealth exchange and decision-making competence," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    6. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
    7. Trimborn, Torsten & Frank, Martin & Martin, Stephan, 2018. "Mean field limit of a behavioral financial market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 613-631.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    3. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2018. "Simulation of Stylized Facts in Agent-Based Computational Economic Market Models," Papers 1812.02726, arXiv.org, revised Nov 2019.
    4. Trimborn, Torsten & Frank, Martin & Martin, Stephan, 2018. "Mean field limit of a behavioral financial market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 613-631.
    5. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    6. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
    7. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    8. Torsten Trimborn, 2018. "A Macroscopic Portfolio Model: From Rational Agents to Bounded Rationality," Papers 1805.11036, arXiv.org, revised Oct 2018.
    9. Torsten Trimborn & Martin Frank & Stephan Martin, 2017. "Mean Field Limit of a Behavioral Financial Market Model," Papers 1711.02573, arXiv.org.
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    12. Maximilian Beikirch & Torsten Trimborn, 2020. "Novel Insights in the Levy-Levy-Solomon Agent-Based Economic Market Model," Papers 2002.10222, arXiv.org.
    13. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    15. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    16. Radu T. Pruna & Maria Polukarov & Nicholas R. Jennings, 2016. "A new structural stochastic volatility model of asset pricing and its stylized facts," Papers 1604.08824, arXiv.org.
    17. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2011. "The dynamic behaviour of asset prices in disequilibrium: a survey," International Journal of Behavioural Accounting and Finance, Inderscience Enterprises Ltd, vol. 2(2), pages 101-139.
    18. Anufriev, M. & Dindo, P.D.E., 2007. "Wealth Selection in a Financial Market with Heterogeneous Agents," CeNDEF Working Papers 07-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    19. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    20. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.03291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.