IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.06234.html
   My bibliography  Save this paper

Household Income Distribution in the USA

Author

Listed:
  • Costas Efthimiou
  • Adam Wearne

Abstract

In this article we present an alternative model for the distribution of household incomes in the United States. We provide arguments from two differing perspectives which both yield the proposed income distribution curve, and then fit this curve to empirical data on household income distribution obtained from the United States Census Bureau.

Suggested Citation

  • Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
  • Handle: RePEc:arx:papers:1602.06234
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.06234
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federico Bassetti & Giuseppe Toscani, 2010. "Explicit equilibria in a kinetic model of gambling," Papers 1002.3689, arXiv.org.
    2. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    3. Clementi, F. & Di Matteo, T. & Gallegati, M., 2006. "The power-law tail exponent of income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 49-53.
    4. Anand Banerjee & Victor M. Yakovenko, 2009. "Universal patterns of inequality," Papers 0912.4898, arXiv.org, revised Apr 2010.
    5. Angle, John, 2006. "The Inequality Process as a wealth maximizing process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 388-414.
    6. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    7. Fujiwara, Yoshi & Souma, Wataru & Aoyama, Hideaki & Kaizoji, Taisei & Aoki, Masanao, 2003. "Growth and fluctuations of personal income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 598-604.
    8. Clementi, F. & Gallegati, M., 2005. "Power law tails in the Italian personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 427-438.
    9. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    10. Ferrero, Juan C, 2004. "The statistical distribution of money and the rate of money transference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 575-585.
    11. A. Drăgulescu & V.M. Yakovenko, 2001. "Evidence for the exponential distribution of income in the USA," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 585-589, April.
    12. Banerjee, Anand & Yakovenko, Victor M. & Di Matteo, T., 2006. "A study of the personal income distribution in Australia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 54-59.
    13. M. Patriarca & E. Heinsalu & A. Chakraborti, 2010. "Basic kinetic wealth-exchange models: common features and open problems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 145-153, January.
    14. F. Clementi & M. Gallegati & G. Kaniadakis, 2007. "κ-generalized statistics in personal income distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 187-193, May.
    15. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    16. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 739-767.
    17. repec:cup:cbooks:9781107013445 is not listed on IDEAS
    18. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    19. A.B. Atkinson & F. Bourguignon (ed.), 2000. "Handbook of Income Distribution," Handbook of Income Distribution, Elsevier, edition 1, volume 1, number 1.
    20. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    21. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    22. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    23. Makoto Nirei & Wataru Souma, 2007. "A Two Factor Model Of Income Distribution Dynamics," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 53(3), pages 440-459, September.
    24. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oancea, Bogdan & Andrei, Tudorel & Pirjol, Dan, 2017. "Income inequality in Romania: The exponential-Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 486-498.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    2. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    4. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    5. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    6. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    7. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    8. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    9. Elvis Oltean, 2016. "Modelling income, wealth, and expenditure data by use of Econophysics," Papers 1603.08383, arXiv.org.
    10. Victor M. Yakovenko, 2012. "Applications of statistical mechanics to economics: Entropic origin of the probability distributions of money, income, and energy consumption," Papers 1204.6483, arXiv.org.
    11. Cui, Jian & Pan, Qiuhui & Qian, Qian & He, Mingfeng & Sun, Qilin, 2013. "A multi-agent dynamic model based on different kinds of bequests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1393-1397.
    12. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    13. Anindya S. Chakrabarti, 2011. "An almost linear stochastic map related to the particle system models of social sciences," Papers 1101.3617, arXiv.org, revised Mar 2011.
    14. Blair Fix, 2018. "Hierarchy and the power-law income distribution tail," Journal of Computational Social Science, Springer, vol. 1(2), pages 471-491, September.
    15. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    16. Bertotti, Maria Letizia & Modanese, Giovanni, 2011. "From microscopic taxation and redistribution models to macroscopic income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3782-3793.
    17. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    18. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    19. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    20. Soriano-Hernández, P. & del Castillo-Mussot, M. & Campirán-Chávez, I. & Montemayor-Aldrete, J.A., 2017. "Wealth of the world’s richest publicly traded companies per industry and per employee: Gamma, Log-normal and Pareto power-law as universal distributions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 733-749.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.06234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.