Pareto tails in socio-economic phenomena: A kinetic description
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Federico Bassetti & Giuseppe Toscani, 2010. "Explicit equilibria in a kinetic model of gambling," Papers 1002.3689, arXiv.org.
- Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
- Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
- Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "Kinetic equations modelling wealth redistribution: A comparison of approaches," CoFE Discussion Papers 08/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
- Arnab Chatterjee & Bikas K. Chakrabarti & Robin B. Stinchcombe, 2005. "Master equation for a kinetic model of trading market and its analytic solution," Papers cond-mat/0501413, arXiv.org, revised Aug 2005.
- Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
- Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
- Ben-Naim, E & Krapivsky, P.L & Vazquez, F & Redner, S, 2003. "Unity and discord in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 99-106.
- Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2013. "The size distribution of US cities: Not Pareto, even in the tail," Economics Letters, Elsevier, vol. 120(2), pages 232-237.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-17.
- Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
- Düring, Bertram & Toscani, Giuseppe, 2008. "International and domestic trading and wealth distribution," CoFE Discussion Papers 08/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
- G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
- Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006.
"Influence of saving propensity on the power-law tail of the wealth distribution,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
- Marco Patriarca & Anirban Chakraborti & Guido Germano, 2005. "Influence of saving propensity on the power law tail of wealth distribution," Papers physics/0506028, arXiv.org.
- Düring, B. & Toscani, G., 2007.
"Hydrodynamics from kinetic models of conservative economies,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 493-506.
- Düring, B. & Toscani, Giuseppe, 2007. "Hydrodynamics from kinetic models of conservative economies," CoFE Discussion Papers 07/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Toscani, Giuseppe, 2016. "Kinetic and mean field description of Gibrat’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 802-811.
- Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
- Giuseppe Toscani, 2016. "Kinetic and mean field description of Gibrat's law," Papers 1606.04796, arXiv.org.
- D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
- G. Toscani & C. Brugna & S. Demichelis, 2012. "Kinetic models for the trading of goods," Papers 1208.6305, arXiv.org.
- Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
- Marco Torregrossa & Giuseppe Toscani, 2017. "Wealth distribution in presence of debts. A Fokker--Planck description," Papers 1709.09858, arXiv.org.
- J. R. Iglesias & R. M. C. de Almeida, 2011. "Entropy and equilibrium state of free market models," Papers 1108.5725, arXiv.org.
- N. Bagatella-Flores & M. Rodriguez-Achach & H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2014. "Wealth distribution of simple exchange models coupled with extremal dynamics," Papers 1407.7153, arXiv.org.
- AlShelahi, Abdullah & Saigal, Romesh, 2018. "Insights into the macroscopic behavior of equity markets: Theory and application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 778-793.
- Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
- Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
- Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
More about this item
Keywords
kinetic models; Boltzmann-type equations; multi-agent systems; economic modeling;All these keywords.
JEL classification:
- C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
- C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
- C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwedp:2017111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.