IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i7d10.1007_s00362-024-01549-x.html
   My bibliography  Save this article

Testing practical relevance of treatment effects

Author

Listed:
  • Andrea Ongaro

    (University of Milan-Bicocca)

  • Sonia Migliorati

    (University of Milan-Bicocca)

  • Roberto Ascari

    (University of Milan-Bicocca)

  • Enrico Ripamonti

    (University of Brescia)

Abstract

Traditionally, common testing problems are formalized in terms of a precise null hypothesis representing an idealized situation such as absence of a certain “treatment effect”. However, in most applications the real purpose of the analysis is to assess evidence in favor of a practically relevant effect, rather than simply determining its presence/absence. This discrepancy leads to erroneous inferential conclusions, especially in case of moderate or large sample size. In particular, statistical significance, as commonly evaluated on the basis of a precise hypothesis low p value, bears little or no information on practical significance. This paper presents an innovative approach to the problem of testing the practical relevance of effects. This relies upon the proposal of a general method for modifying standard tests by making them suitable to deal with appropriate interval null hypotheses containing all practically irrelevant effect sizes. In addition, when it is difficult to specify exactly which effect sizes are irrelevant we provide the researcher with a benchmark value. Acceptance/rejection can be established purely by deciding on the (ir)relevance of this value. We illustrate our proposal in the context of many important testing setups, and we apply the proposed methods to two case studies in clinical medicine. First, we consider data on the evaluation of systolic blood pressure in a sample of adult participants at risk for nutritional deficit. Second, we focus on a study of the effects of remdesivir on patients hospitalized with COVID-19.

Suggested Citation

  • Andrea Ongaro & Sonia Migliorati & Roberto Ascari & Enrico Ripamonti, 2024. "Testing practical relevance of treatment effects," Statistical Papers, Springer, vol. 65(7), pages 4121-4145, September.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01549-x
    DOI: 10.1007/s00362-024-01549-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01549-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01549-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen T. Ziliak & Deirdre N. McCloskey, 2004. "Size Matters: The Standard Error of Regressions in the American Economic Review," Econ Journal Watch, Econ Journal Watch, vol. 1(2), pages 331-358, August.
    2. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    3. Kelley, Ken, 2007. "Confidence Intervals for Standardized Effect Sizes: Theory, Application, and Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i08).
    4. Fidler, Fiona & Geoff, Cumming & Mark, Burgman & Neil, Thomason, 2004. "Statistical reform in medicine, psychology and ecology," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(5), pages 615-630, November.
    5. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    6. Janosky, Janine E., 2008. "Statistical testing alone and estimation plus testing: Reporting study outcomes in biomedical journals," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2327-2331, October.
    7. Bruno Lecoutre & Marie‐Paule Lecoutre & Jacques Poitevineau, 2001. "Uses, Abuses and Misuses of Significance Tests in the Scientific Community: Won't the Bayesian Choice be Unavoidable?," International Statistical Review, International Statistical Institute, vol. 69(3), pages 399-417, December.
    8. Rebecca A. Betensky, 2019. "The p-Value Requires Context, Not a Threshold," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 115-117, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    2. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    3. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    4. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    5. Nancy Reid & David R. Cox, 2015. "On Some Principles of Statistical Inference," International Statistical Review, International Statistical Institute, vol. 83(2), pages 293-308, August.
    6. Xuhua Liu & Xingzhong Xu, 2016. "Confidence distribution inferences in one-way random effects model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 59-74, March.
    7. Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
    8. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
    9. Andrea C. Garcia‐Angulo & Gerda Claeskens, 2023. "Exact uniformly most powerful postselection confidence distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 358-382, March.
    10. Piero Veronese & Eugenio Melilli, 2015. "Fiducial and Confidence Distributions for Real Exponential Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 471-484, June.
    11. Thomas R. Dyckman, 2016. "Significance Testing: We Can Do Better," Abacus, Accounting Foundation, University of Sydney, vol. 52(2), pages 319-342, June.
    12. Liu, Xuhua & Li, Na & Hu, Yuqin, 2015. "Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 136-142.
    13. Delbianco Fernando & Tohmé Fernando, 2023. "What is a relevant control?: An algorithmic proposal," Asociación Argentina de Economía Política: Working Papers 4643, Asociación Argentina de Economía Política.
    14. Rachel G. Childers, 2011. "Being One'S Own Boss: How Does Risk Fit In?," The American Economist, Sage Publications, vol. 56(1), pages 48-58, May.
    15. Ricardo Barradas & Ines Tomas, 2023. "Household indebtedness in the European Union countries: Going beyond the mainstream interpretation," PSL Quarterly Review, Economia civile, vol. 76(304), pages 21-49.
    16. McShane, Michael K. & Cox, Larry A. & Butler, Richard J., 2010. "Regulatory competition and forbearance: Evidence from the life insurance industry," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 522-532, March.
    17. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    18. Stanley, T.D. & Doucouliagos, Chris & Jarrell, Stephen B., 2008. "Meta-regression analysis as the socio-economics of economics research," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 37(1), pages 276-292, February.
    19. Anupama Sen and Tooraj Jamasb, 2012. "Diversity in Unity: An Empirical Analysis of Electricity Deregulation in Indian States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Evangelista, Rui & Ramalho, Esmeralda A. & Andrade e Silva, João, 2020. "On the use of hedonic regression models to measure the effect of energy efficiency on residential property transaction prices: Evidence for Portugal and selected data issues," Energy Economics, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01549-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.