Max-linear graphical models with heavy-tailed factors on trees of transitive tournaments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sebastian Engelke & Adrien S. Hitz, 2020. "Graphical models for extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 871-932, September.
- Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011.
"An M-Estimator for Tail Dependence in Arbitrary Dimensions,"
Other publications TiSEM
27508aa0-9825-4d9e-b1f4-1, Tilburg University, School of Economics and Management.
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
- Einmahl, John H. J. & Krajina, Andrea & Segers, Johan, 2012. "An M-estimator for tail dependence in arbitrary dimensions," LIDAM Reprints ISBA 2012035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2012. "An M-estimator for tail dependence in arbitrary dimensions," Other publications TiSEM 7d447c58-3e8f-4387-b36b-e, Tilburg University, School of Economics and Management.
- EINMAHL, John H.J. & KRAJINA, Andrea & Segers, Johan, 2011. "An M-Estimator For Tail Dependence In Arbitrary Dimensions," LIDAM Discussion Papers ISBA 2011005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2021. "Inference on extremal dependence in the domain of attraction of a structured Hüsler–Reiss distribution motivated by a Markov tree with latent variables," LIDAM Reprints ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
- Nadine Gissibl & Claudia Klüppelberg & Steffen Lauritzen, 2021. "Identifiability and estimation of recursive max‐linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 188-211, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
- Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Klüppelberg, Claudia & Sönmez, Ercan, 2022. "Max-linear models in random environment," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
- Mourahib, Anas & Kiriliouk, Anna & Segers, Johan, 2023. "Multivariate generalized Pareto distributions along extreme directions," LIDAM Discussion Papers ISBA 2023034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
- Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
- Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016.
"Beyond Dimension two: A Test for Higher-Order Tail Risk,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
- Bormann, Carsten & Schienle, Melanie & Schaumburg, Julia, 2014. "Beyond dimension two: A test for higher-order tail risk," SFB 649 Discussion Papers 2014-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bormann, Carsten & Schaumburg, Julia & Schienle, Melanie, 2016. "Beyond dimension two: A test for higher-order tail risk," Working Paper Series in Economics 80, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Junshu Jiang & Jordan Richards & Raphael Huser & David Bolin, 2024. "The Efficient Tail Hypothesis: An Extreme Value Perspective on Market Efficiency," Papers 2408.06661, arXiv.org.
- Einmahl, John & Segers, Johan, 2020.
"Empirical Tail Copulas for Functional Data,"
Other publications TiSEM
edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
- Einmahl, John & Segers, Johan, 2020. "Empirical tail copulas for functional data," LIDAM Discussion Papers ISBA 2020004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Discussion Paper 2020-004, Tilburg University, Center for Economic Research.
- Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
- John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016.
"An M-estimator of spatial tail dependence,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Other publications TiSEM 2d5c1a3b-a5f6-4329-8df2-f, Tilburg University, School of Economics and Management.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2016. "An M-estimator of spatial tail dependence," LIDAM Reprints ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Discussion Paper 2014-021, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Christis Katsouris, 2023. "Statistical Estimation for Covariance Structures with Tail Estimates using Nodewise Quantile Predictive Regression Models," Papers 2305.11282, arXiv.org, revised Jul 2023.
- Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
- Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016.
"A continuous updating weighted least squares estimator of tail dependence in high dimensions,"
LIDAM Discussion Papers ISBA
2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John H. J. & Kiriliouk, Anna & Segers, Johan, 2018. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Reprints ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
- Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
More about this item
Keywords
Max-linear model ; heavy tails ; extremal dependence ; conditional dependence ; probabilistic graphical model ; directed acyclic graph ; tournaments ; extremes;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-NET-2022-11-07 (Network Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022031. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.