IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2022031.html
   My bibliography  Save this paper

Max-linear graphical models with heavy-tailed factors on trees of transitive tournaments

Author

Listed:
  • Asenova, Stefka

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Segers, Johan

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Graphical models with heavy-tailed factors can be used to model extremal depen- dence or causality between extreme events. In a Bayesian network, variables are recur- sively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graphs, which we call a tree of transitive tournaments. The latter are block graphs combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into indepen- dent increments along the shortest trail between two variables, thereby imitating the behavior of a Markov random field. We are also interested in the identifiability of the model parameters in case some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.

Suggested Citation

  • Asenova, Stefka & Segers, Johan, 2022. "Max-linear graphical models with heavy-tailed factors on trees of transitive tournaments," LIDAM Discussion Papers ISBA 2022031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2022031
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A265639/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Engelke & Adrien S. Hitz, 2020. "Graphical models for extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 871-932, September.
    2. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    3. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2021. "Inference on extremal dependence in the domain of attraction of a structured Hüsler–Reiss distribution motivated by a Markov tree with latent variables," LIDAM Reprints ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
    6. Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    7. Nadine Gissibl & Claudia Klüppelberg & Steffen Lauritzen, 2021. "Identifiability and estimation of recursive max‐linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 188-211, March.
    8. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    4. Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
    5. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    6. Mourahib, Anas & Kiriliouk, Anna & Segers, Johan, 2023. "Multivariate generalized Pareto distributions along extreme directions," LIDAM Discussion Papers ISBA 2023034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
    8. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    9. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Discussion Paper 2020-004, Tilburg University, Center for Economic Research.
    10. Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
    11. Klüppelberg, Claudia & Sönmez, Ercan, 2022. "Max-linear models in random environment," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    12. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    13. Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
    15. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.