Extremes of Markov random fields on block graphs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sebastian Engelke & Adrien S. Hitz, 2020. "Graphical models for extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 871-932, September.
- Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," LIDAM Reprints ISBA 2018003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2021. "Inference on extremal dependence in the domain of attraction of a structured Hüsler–Reiss distribution motivated by a Markov tree with latent variables," LIDAM Reprints ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Papastathopoulos, Ioannis & Strokorb, Kirstin, 2016. "Conditional independence among max-stable laws," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 9-15.
- Marc G. Genton & Yanyuan Ma & Huiyan Sang, 2011. "On the likelihood function of Gaussian max-stable processes," Biometrika, Biometrika Trust, vol. 98(2), pages 481-488.
- Segers, Johan, 2020. "One- versus multi-component regular variation and extremes of Markov trees," LIDAM Reprints ISBA 2020024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Sebastian Engelke & Alexander Malinowski & Zakhar Kabluchko & Martin Schlather, 2015. "Estimation of Hüsler–Reiss distributions and Brown–Resnick processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 239-265, January.
- Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
- Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
- Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Mourahib, Anas & Kiriliouk, Anna & Segers, Johan, 2023. "Multivariate generalized Pareto distributions along extreme directions," LIDAM Discussion Papers ISBA 2023034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
- Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
- Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
- Segers, Johan, 2019. "One- versus multi-component regular variation and extremes of Markov trees," LIDAM Discussion Papers ISBA 2019001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
- Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
- Einmahl, John & Segers, Johan, 2020.
"Empirical Tail Copulas for Functional Data,"
Other publications TiSEM
edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
- Einmahl, John & Segers, Johan, 2020. "Empirical tail copulas for functional data," LIDAM Discussion Papers ISBA 2020004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Discussion Paper 2020-004, Tilburg University, Center for Economic Research.
- Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
- Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
- Krupskii, Pavel & Joe, Harry & Lee, David & Genton, Marc G., 2018. "Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 80-95.
- Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
- Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Asenova, Stefka & Segers, Johan, 2022. "Max-linear graphical models with heavy-tailed factors on trees of transitive tournaments," LIDAM Discussion Papers ISBA 2022031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015.
"Nonparametric tests for constant tail dependence with an application to energy and finance,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
- Bucher, Axel & Jaschke, Stefan & Wied, Dominik, 2013. "Nonparametric tests for constant tail dependence with an application to energy and finance," LIDAM Discussion Papers ISBA 2013033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Papastathopoulos, Ioannis & Strokorb, Kirstin, 2016. "Conditional independence among max-stable laws," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 9-15.
More about this item
Keywords
Markov random field ; graphical model ; block graph ; multivariate extremes ; tail dependence ; latent variable ; Hüsler–Reiss distribution ; conditional independence;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DCM-2022-07-11 (Discrete Choice Models)
- NEP-RMG-2022-07-11 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022013. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.