IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp3-18.html
   My bibliography  Save this article

Robustness of estimation methods in a survival cure model with mismeasured covariates

Author

Listed:
  • Bertrand, A.
  • Legrand, C.
  • Léonard, D.
  • Van Keilegom, I.

Abstract

In medical applications, time-to-event data is frequently encountered. While classical survival methods are well known and broadly used to analyze such data, they do not take into account two phenomena which appear quite often in practice: the presence of individuals who will never experience the event of interest (they are cured from this event) and of measurement error in the continuous covariates. Two approaches exist in the literature to estimate a model, taking these features into account. However, they require information about the distribution of the measurement error which is rarely fully known in practice. A theoretical study of bias motivates the need to take the measurement error into account. The conclusions of an extensive simulation study investigating the robustness of both correction approaches with respect to their assumptions then provide some practical recommendations for similar situations. Finally, the time until recurrence after surgery for rectal cancer patients is analyzed, taking into account the results from the simulations. Both correction methods were implemented in the R package miCoPTCM.

Suggested Citation

  • Bertrand, A. & Legrand, C. & Léonard, D. & Van Keilegom, I., 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 3-18.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:3-18
    DOI: 10.1016/j.csda.2016.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302870
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aurelie Bertrand & Catherine Legrand & Raymond J. Carroll & Christophe de Meester & Ingrid Van Keilegom, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," Biometrika, Biometrika Trust, vol. 104(1), pages 31-50.
    2. Bertrand, Aurelie & Legrand, Catherine & Carroll, Raymond J. & de Meester de Ravenstein, Christophe & Van Keilegom, Ingrid, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," LIDAM Reprints ISBA 2017046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Luis E. Nieto‐Barajas & Guosheng Yin, 2008. "Bayesian Semiparametric Cure Rate Model with an Unknown Threshold," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 540-556, September.
    4. Zeng, Donglin & Yin, Guosheng & Ibrahim, Joseph G., 2006. "Semiparametric Transformation Models for Survival Data With a Cure Fraction," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 670-684, June.
    5. Ma, Yanyuan & Yin, Guosheng, 2008. "Cure Rate Model With Mismeasured Covariates Under Transformation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 743-756, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    2. Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
    4. Amico, Mailis & Van Keilegom, Ingrid, 2017. "Cure models in survival analysis," LIDAM Discussion Papers ISBA 2017007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amico, Mailis & Van Keilegom, Ingrid, 2017. "Cure models in survival analysis," LIDAM Discussion Papers ISBA 2017007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Chen, Li-Pang, 2019. "Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    3. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    4. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Portier, Francois & El Ghouch, Anouar & Van Keilegom, Ingrid, 2015. "Efficiency and Bootstrap in the Promotion Time Cure Model," LIDAM Discussion Papers ISBA 2015012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Sandip Barui & Grace Y. Yi, 2020. "Semiparametric methods for survival data with measurement error under additive hazards cure rate models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 421-450, July.
    7. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    8. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    9. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    10. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    11. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    13. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    14. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    15. Bremhorst, Vincent & Kreyenfeld, Michaela & Lambert, Philippe, 2017. "Nonparametric double additive cure survival models: an application to the estimation of the nonlinear effect of age at first parenthood on fertility progression," LIDAM Discussion Papers ISBA 2017004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Jue Hou & Christina D. Chambers & Ronghui Xu, 2018. "A nonparametric maximum likelihood approach for survival data with observed cured subjects, left truncation and right-censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 612-651, October.
    17. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.
    18. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    19. Aurelie Bertrand & Catherine Legrand & Raymond J. Carroll & Christophe de Meester & Ingrid Van Keilegom, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," Biometrika, Biometrika Trust, vol. 104(1), pages 31-50.
    20. Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:3-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.