IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2015004.html
   My bibliography  Save this paper

Frontier estimation in the presence of measurement error with unknown variance

Author

Listed:
  • Kneip, Alois
  • Simar, Leopold
  • Van Keilegom, Ingrid

Abstract

Frontier estimation appears in productivity analysis. Firm’s performance is measured by the distance between its output and an optimal production frontier. Frontier estimation becomes difficult if outputs are measured with noise and most approaches rely on restrictive parametric assumptions. This paper contributes to nonparametric approaches, with unknown frontier and unknown variance of a normally distributed error. We propose a nonparametric method identifying and estimating both quantities simultaneously. Consistency and rate of convergence of our estimators are established, and simulations verify the performance of the estimators for small samples. We illustrate our method with data on American electricity companies.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kneip, Alois & Simar, Leopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," LIDAM Reprints ISBA 2015004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2015004
    Note: In : Journal of Econometrics, vol. 184, no.2, p. 379-393 (2015)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hall P. & Simar L., 2002. "Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 523-534, June.
    2. Schwarz, M. & Van Bellegem, S., 2010. "Consistent density deconvolution under partially known error distribution," LIDAM Reprints ISBA 2010013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    4. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    5. Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
    6. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    7. Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Consistent density deconvolution under partially known error distribution," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 236-241, February.
    8. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    9. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    10. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    11. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Korostelev, A.P. & Simar , L. & Tsybakov, A.B., 1995. "On estimation of monotone and convex boundaries," LIDAM Reprints CORE 1139, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    14. Lucie Aarts & Piet Groeneboom & Geurt Jongbloed, 2007. "Estimating the Upper Support Point in Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(3), pages 552-568, September.
    15. Whitney K. Newey, 2001. "Flexible Simulated Moment Estimation Of Nonlinear Errors-In-Variables Models," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 616-627, November.
    16. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    17. S.‐O. Jeong & B. U. Park, 2006. "Large Sample Approximation of the Distribution for Convex‐Hull Estimators of Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 139-151, March.
    18. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    19. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    20. Goldenshluger, A. & Tsybakov, A., 2004. "Estimating the endpoint of a distribution in the presence of additive observation errors," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 39-49, June.
    21. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    22. Park, B.U. & Jeong, S.-O. & Simar, L., 2010. "Asymptotic distribution of conical-hull estimators of directional edges," LIDAM Reprints ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    23. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    4. Simar, Léopold & Vanhems, Anne & Van Keilegom, Ingrid, 2016. "Unobserved heterogeneity and endogeneity in nonparametric frontier estimation," Journal of Econometrics, Elsevier, vol. 190(2), pages 360-373.
    5. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    6. Christopher F. Parmeter & Léopold Simar & Ingrid Van Keilegom & Valentin Zelenyuk, 2024. "Inference in the nonparametric stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 43(7), pages 518-539, August.
    7. Eric Weese & Masayoshi Hayashi & Masashi Nishikawa, 2015. "Inefficiency and Self-Determination: Simulation-based Evidence from Meiji Japan," Discussion Paper Series DP2015-35, Research Institute for Economics & Business Administration, Kobe University.
    8. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    9. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021. "Robustified Expected Maximum Production Frontiers," Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
    10. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    11. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2022. "Efficiency Analysis with Stochastic Frontier Models Using Popular Statistical Softwares," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 129-171, Springer.
    12. Kok Fong See & Shawna Grosskopf & Vivian Valdmanis & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP072021, School of Economics, University of Queensland, Australia.
    13. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    14. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
    15. Preciado Arreola, José Luis & Johnson, Andrew L. & Chen, Xun C. & Morita, Hiroshi, 2020. "Estimating stochastic production frontiers: A one-stage multivariate semiparametric Bayesian concave regression method," European Journal of Operational Research, Elsevier, vol. 287(2), pages 699-711.
    16. Léopold Simar & Paul W. Wilson, 2023. "Nonparametric, Stochastic Frontier Models with Multiple Inputs and Outputs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1391-1403, October.
    17. Tsionas, Mike G., 2020. "Bounded rationality and thick frontiers in stochastic frontier analysis," European Journal of Operational Research, Elsevier, vol. 284(2), pages 762-768.
    18. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    19. Papadopoulos, Alecos & Parmeter, Christopher F., 2023. "A specification test for the composed error term in the stochastic frontier model," Economics Letters, Elsevier, vol. 233(C).
    20. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    21. Song, Junmo & Oh, Dong-hyun & Kang, Jiwon, 2017. "Robust estimation in stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 243-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kneip, A. & Simar, L. & Van Keilegom I., 2010. "Boundary estimation in the presence of measurement error with unknown variance," LIDAM Discussion Papers ISBA 2010046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    3. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    4. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    5. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    6. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    7. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    8. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    9. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    10. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    11. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    12. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    13. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    14. Dongwei Su & Xingxing He, 2012. "Ownership structure, corporate governance and productive efficiency in China," Journal of Productivity Analysis, Springer, vol. 38(3), pages 303-318, December.
    15. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
    16. Gilbert, R. Alton & Wheelock, David C. & Wilson, Paul W., 2004. "New evidence on the Fed's productivity in providing payments services," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2175-2190, September.
    17. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    18. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    19. Bao Hoang Nguyen & Valentin Zelenyuk, 2020. "Robust efficiency analysis of public hospitals in Queensland, Australia," CEPA Working Papers Series WP052020, School of Economics, University of Queensland, Australia.
    20. Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," IDEI Working Papers 625, Institut d'Économie Industrielle (IDEI), Toulouse.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2015004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.