IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v203y2018i1p33-49.html
   My bibliography  Save this article

A multivariate test against spurious long memory

Author

Listed:
  • Sibbertsen, Philipp
  • Leschinski, Christian
  • Busch, Marie

Abstract

This paper provides a multivariate score-type test against spurious long memory. We prove the consistency of the test against the alternatives of random level shifts and smooth trends. The test statistic is based on the weighted sum of the partial derivatives of the multivariate local Whittle likelihood function. To apply the test to fractionally cointegrated series, the test statistic is calculated for the linearly transformed system after estimating the cointegrating matrix. We derive the limiting distribution and show consistency of this procedure. The test is applied to log-absolute returns and log-realized volatilities of the S&P 500, DAX, FTSE, and NIKKEI.

Suggested Citation

  • Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
  • Handle: RePEc:eee:econom:v:203:y:2018:i:1:p:33-49
    DOI: 10.1016/j.jeconom.2017.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617302324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Arturo Leccadito & Omar Rachedi & Giovanni Urga, 2015. "True Versus Spurious Long Memory: Some Theoretical Results and a Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 452-479, April.
    3. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    4. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    5. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    6. Nielsen, Morten Orregaard, 2007. "Local Whittle Analysis of Stationary Fractional Cointegration and the ImpliedRealized Volatility Relation," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 427-446, October.
    7. Chun Yip Yau & Richard A. Davis, 2012. "Likelihood inference for discriminating between long-memory and change-point models," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(4), pages 649-664, July.
    8. Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
    9. Shimotsu, Katsumi, 2012. "Exact local Whittle estimation of fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 169(2), pages 266-278.
    10. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    11. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    12. Davidson James & Rambaccussing Dooruj, 2015. "A Test of the Long Memory Hypothesis Based on Self-Similarity," Journal of Time Series Econometrics, De Gruyter, vol. 7(2), pages 115-141, July.
    13. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    14. Morten Ørregaard Nielsen & Per Frederiksen, 2011. "Fully modified narrow‐band least squares estimation of weak fractional cointegration," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 77-120, February.
    15. Stefanos Kechagias & Vladas Pipiras, 2015. "Definitions And Representations Of Multivariate Long-Range Dependent Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 1-25, January.
    16. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    17. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    18. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    19. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    20. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    21. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    22. Kruse, Robinson, 2015. "A modified test against spurious long memory," Economics Letters, Elsevier, vol. 135(C), pages 34-38.
    23. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    24. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    25. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    26. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    27. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    28. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    29. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    30. Rebecca J. Sela & Clifford M. Hurvich, 2009. "Computationally efficient methods for two multivariate fractionally integrated models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 631-651, November.
    31. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    32. Rambaccussing, Dooruj & Davidson, James, 2015. "A test of long memory hypothesis based on self-similarity," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-81, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    33. Robinson, P.M., 2008. "Diagnostic testing for cointegration," Journal of Econometrics, Elsevier, vol. 143(1), pages 206-225, March.
    34. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    35. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
    36. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    37. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    38. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    2. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    3. Alia Afzal & Philipp Sibbertsen, 2023. "Long Memory, Spurious Memory: Persistence in Range-Based Volatility of Exchange Rates," Open Economies Review, Springer, vol. 34(4), pages 789-811, September.
    4. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    6. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
    7. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    9. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    11. Dooruj Rambaccussing & Murat Mazibas, 2020. "True versus Spurious Long Memory in Cryptocurrencies," JRFM, MDPI, vol. 13(9), pages 1-11, August.
    12. Less, Vivien & Sibbertsen, Philipp, 2022. "Estimation and Testing in a Perturbed Multivariate Long Memory Framework," Hannover Economic Papers (HEP) dp-704, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Sibbertsen, Philipp & Wenger, Kai & Wingert, Simon, 2020. "Testing for Multiple Structural Breaks in Multivariate Long Memory Time Series," Hannover Economic Papers (HEP) dp-676, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Leschinski, Christian & Sibbertsen, Philipp, 2017. "Origins of Spurious Long Memory," Hannover Economic Papers (HEP) dp-595, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    2. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    3. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    6. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    7. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    8. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    9. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    11. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    12. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    13. Less, Vivien & Sibbertsen, Philipp, 2022. "Estimation and Testing in a Perturbed Multivariate Long Memory Framework," Hannover Economic Papers (HEP) dp-704, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    15. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    16. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    17. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
    18. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    19. Hassler, Uwe & Rodrigues, Paulo M.M. & Rubia, Antonio, 2014. "Persistence in the banking industry: Fractional integration and breaks in memory," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 95-112.
    20. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.

    More about this item

    Keywords

    Multivariate long memory; Semiparametric estimation; Spurious long memory; Fractional cointegration; Volatility;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:203:y:2018:i:1:p:33-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.