IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v19y2003i3p477-491.html
   My bibliography  Save this article

Long memory time series and short term forecasts

Author

Listed:
  • Man, K. S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Man, K. S., 2003. "Long memory time series and short term forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 477-491.
  • Handle: RePEc:eee:intfor:v:19:y:2003:i:3:p:477-491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(02)00060-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    2. Andersson, Michael K., 1998. "Do Long-Memory Models Have Long Memory?," SSE/EFI Working Paper Series in Economics and Finance 227, Stockholm School of Economics, revised 16 Mar 2000.
    3. Bhansali, R. J. & Kokoszka, P. S., 2002. "Computation of the forecast coefficients for multistep prediction of long-range dependent time series," International Journal of Forecasting, Elsevier, vol. 18(2), pages 181-206.
    4. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
    5. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    6. Andersson, Michael K., 2000. "Do long-memory models have long memory?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 121-124.
    7. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    8. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
    2. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    3. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    4. Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
    5. Man Kasing, 2010. "Extended Fractional Gaussian Noise and Simple ARFIMA Approximations," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-26, September.
    6. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    7. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    10. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    11. Heinen, Florian & Sibbertsen, Philipp & Kruse, Robinson, 2009. "Forecasting long memory time series under a break in persistence," Hannover Economic Papers (HEP) dp-433, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    13. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    14. Man, K.S. & Tiao, G.C., 2006. "Aggregation effect and forecasting temporal aggregates of long memory processes," International Journal of Forecasting, Elsevier, vol. 22(2), pages 267-281.
    15. Nidhi Choudhary & Girish K. Nair & Harsh Purohit, 2015. "Volatility In Copper Prices In India," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-26, December.
    16. Leonardo Souza & Jeremy Smith & Reinaldo Souza, 2006. "Convex combinations of long memory estimates from different sampling rates," Computational Statistics, Springer, vol. 21(3), pages 399-413, December.
    17. J. Eduardo Vera-Vald'es, 2018. "Nonfractional Memory: Filtering, Antipersistence, and Forecasting," Papers 1801.06677, arXiv.org.
    18. K. S. Man & G. C. Tiao, 2009. "ARFIMA approximation and forecasting of the limiting aggregate structure of long-memory process," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 89-101.
    19. Tao Yin & Yiming Wang, 2019. "Predicting the Price of WTI Crude Oil Using ANN and Chaos," Sustainability, MDPI, vol. 11(21), pages 1-14, October.
    20. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    3. Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009. "Forecasting long memory time series under a break in persistence," CREATES Research Papers 2009-53, Department of Economics and Business Economics, Aarhus University.
    4. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, October.
    5. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    6. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    7. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    8. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, vol. 97(2), pages 365-381, August.
    9. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    10. Souza, Leonardo R. & Smith, Jeremy, 2002. "Bias in the memory parameter for different sampling rates," International Journal of Forecasting, Elsevier, vol. 18(2), pages 299-313.
    11. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2021. "Long-memory modeling and forecasting: evidence from the U.S. historical series of inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(5), pages 289-310, December.
    12. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    13. Boutahar, Mohamed & Mootamri, Imène & Péguin-Feissolle, Anne, 2009. "A fractionally integrated exponential STAR model applied to the US real effective exchange rate," Economic Modelling, Elsevier, vol. 26(2), pages 335-341, March.
    14. van Mierlo, J.G.A., 2001. "Over de verhouding tussen overheid, marktwerking en privatisering. Een economische meta-analyse," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    15. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    16. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    17. Hassler, Uwe & Hosseinkouchack, Mehdi, 2014. "Effect of the order of fractional integration on impulse responses," Economics Letters, Elsevier, vol. 125(2), pages 311-314.
    18. Rinke, Saskia & Busch, Marie & Leschinski, Christian, 2017. "Long Memory, Breaks, and Trends: On the Sources of Persistence in Inflation Rates," Hannover Economic Papers (HEP) dp-584, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    19. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    20. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:19:y:2003:i:3:p:477-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.