IDEAS home Printed from https://ideas.repec.org/h/eee/gamchp/v4y2015icp861-899.html
   My bibliography  Save this book chapter

Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643

Author

Listed:
  • Marden, Jason R.
  • Shamma, Jeff S.

Abstract

Game theory has been employed traditionally as a modeling tool for describing and influencing behavior in societal systems. Recently, game theory has emerged as a valuable tool for controlling or prescribing behavior in distributed engineered systems. The rationale for this new perspective stems from the parallels between the underlying decision-making architectures in both societal systems and distributed engineered systems. In particular, both settings involve an interconnection of decision-making elements whose collective behavior depends on a compilation of local decisions that are based on partial information about each other and the state of the world. Accordingly, there is extensive work in game theory that is relevant to the engineering agenda. Similarities notwithstanding, there remain important differences between the constraints and objectives in societal and engineered systems that require looking at game-theoretic methods from a new perspective. This chapter provides an overview of selected recent developments of game-theoretic methods in this role as a framework for distributed control in engineered systems.

Suggested Citation

  • Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
  • Handle: RePEc:eee:gamchp:v:4:y:2015:i:c:p:861-899
    DOI: 10.1016/B978-0-444-53766-9.00016-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/B9780444537669000161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/B978-0-444-53766-9.00016-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Hervé Moulin & Scott Shenker, 2001. "Strategyproof sharing of submodular costs:budget balance versus efficiency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(3), pages 511-533.
    3. Sergiu Hart, 2013. "Adaptive Heuristics," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 11, pages 253-287, World Scientific Publishing Co. Pte. Ltd..
    4. Haeringer, Guillaume, 2006. "A new weight scheme for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 88-98, July.
    5. Sergiu Hart & Andreu Mas-Colell, 2013. "Stochastic Uncoupled Dynamics And Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 8, pages 165-189, World Scientific Publishing Co. Pte. Ltd..
    6. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    7. H Peyton Young & Jason R. Marden and Lucy Y. Pao, 2011. "Achieving Pareto Optimality Through Distributed Learning," Economics Series Working Papers 557, University of Oxford, Department of Economics.
    8. Kreindler, Gabriel E. & Young, H. Peyton, 2013. "Fast convergence in evolutionary equilibrium selection," Games and Economic Behavior, Elsevier, vol. 80(C), pages 39-67.
    9. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    10. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    11. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    12. , P. & , Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    13. Ragavendran Gopalakrishnan & Jason R. Marden & Adam Wierman, 2014. "Potential Games Are Necessary to Ensure Pure Nash Equilibria in Cost Sharing Games," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1252-1296, November.
    14. Jason R. Marden & Adam Wierman, 2013. "Distributed Welfare Games," Operations Research, INFORMS, vol. 61(1), pages 155-168, February.
    15. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    16. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    17. Bergin, James & Lipman, Barton L, 1996. "Evolution with State-Dependent Mutations," Econometrica, Econometric Society, vol. 64(4), pages 943-956, July.
    18. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    19. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
    20. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    21. Theodore J. Lambert & Marina A. Epelman & Robert L. Smith, 2005. "A Fictitious Play Approach to Large-Scale Optimization," Operations Research, INFORMS, vol. 53(3), pages 477-489, June.
    22. Moulin, Hervé, 2010. "An efficient and almost budget balanced cost sharing method," Games and Economic Behavior, Elsevier, vol. 70(1), pages 107-131, September.
    23. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, December.
    24. Itai Arieli & Yakov Babichenko, 2011. "Average Testing and the Efficient Boundary," Discussion Paper Series dp567, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    25. Moulin, Herve & Vohra, Rakesh, 2003. "Characterization of additive cost sharing methods," Economics Letters, Elsevier, vol. 80(3), pages 399-407, September.
    26. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    27. Arrow, Kenneth J, 1986. "Rationality of Self and Others in an Economic System," The Journal of Business, University of Chicago Press, vol. 59(4), pages 385-399, October.
    28. Yakov Babichenko, 2010. "Completely Uncoupled Dynamics and Nash Equilibria," Discussion Paper Series dp529, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    29. Alós-Ferrer, Carlos & Netzer, Nick, 2010. "The logit-response dynamics," Games and Economic Behavior, Elsevier, vol. 68(2), pages 413-427, March.
    30. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    31. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    32. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    2. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 195-208.
    3. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
    4. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," LSE Research Online Documents on Economics 65422, London School of Economics and Political Science, LSE Library.
    5. Lahkar, Ratul, 2017. "Equilibrium selection in the stag hunt game under generalized reinforcement learning," Journal of Economic Behavior & Organization, Elsevier, vol. 138(C), pages 63-68.
    6. Lim, Wooyoung & Neary, Philip R., 2016. "An experimental investigation of stochastic adjustment dynamics," Games and Economic Behavior, Elsevier, vol. 100(C), pages 208-219.
    7. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    8. Holly P. Borowski & Jason R. Marden & Jeff S. Shamma, 2019. "Learning to Play Efficient Coarse Correlated Equilibria," Dynamic Games and Applications, Springer, vol. 9(1), pages 24-46, March.
    9. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    10. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    11. Juan I Block & Drew Fudenberg & David K Levine, 2017. "Learning Dynamics Based on Social Comparisons," Levine's Working Paper Archive 786969000000001375, David K. Levine.
    12. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    13. Block, Juan I. & Fudenberg, Drew & Levine, David K., 2019. "Learning dynamics with social comparisons and limited memory," Theoretical Economics, Econometric Society, vol. 14(1), January.
    14. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    15. Burkhard Schipper, 2015. "Strategic teaching and learning in games," Working Papers 151, University of California, Davis, Department of Economics.
    16. Ennio Bilancini & Leonardo Boncinelli, 2020. "The evolution of conventions under condition-dependent mistakes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 497-521, March.
    17. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    18. Carlos Alós-Ferrer & Nick Netzer, 2015. "Robust stochastic stability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 31-57, January.
    19. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    20. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.

    More about this item

    Keywords

    Strategic learning; Evolutionary games; Utility design; Disequilibrium; Control systems; C73 “Stochastic and dynamic games; Evolutionary games; Repeated games†;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamchp:v:4:y:2015:i:c:p:861-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.