IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v44y2015i4p903-932.html
   My bibliography  Save this article

Evolutionary dynamics and equitable core selection in assignment games

Author

Listed:
  • Heinrich Nax
  • Bary Pradelski

Abstract

We study evolutionary dynamics in assignment games where many agents interact anonymously at virtually no cost. The process is decentralized, very little information is available and trade takes place at many different prices simultaneously. We propose a completely uncoupled learning process that selects a subset of the core of the game with a natural equity interpretation. This happens even though agents have no knowledge of other agents’ strategies, payoffs, or the structure of the game, and there is no central authority with such knowledge either. In our model, agents randomly encounter other agents, make bids and offers for potential partnerships and match if the partnerships are profitable. Equity is favored by our dynamics because it is more stable, not because of any ex ante fairness criterion. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
  • Handle: RePEc:spr:jogath:v:44:y:2015:i:4:p:903-932
    DOI: 10.1007/s00182-014-0459-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-014-0459-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00182-014-0459-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klaus, Bettina & Klijn, Flip & Walzl, Markus, 2010. "Stochastic stability for roommate markets," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2218-2240, November.
    2. Chung, Kim-Sau, 2000. "On the Existence of Stable Roommate Matchings," Games and Economic Behavior, Elsevier, vol. 33(2), pages 206-230, November.
    3. Newton, Jonathan & Sawa, Ryoji, 2015. "A one-shot deviation principle for stability in matching problems," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1-27.
    4. E. Inarra & C. Larrea & E. Molis, 2008. "Random paths to P-stability in the roommate problem," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 461-471, March.
    5. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    6. Klaus, Bettina & Klijn, Flip, 2007. "Paths to stability for matching markets with couples," Games and Economic Behavior, Elsevier, vol. 58(1), pages 154-171, January.
    7. Agastya, Murali, 1999. "Perturbed Adaptive Dynamics in Coalition Form Games," Journal of Economic Theory, Elsevier, vol. 89(2), pages 207-233, December.
    8. Crawford, Vincent P & Knoer, Elsie Marie, 1981. "Job Matching with Heterogeneous Firms and Workers," Econometrica, Econometric Society, vol. 49(2), pages 437-450, March.
    9. Sergiu Hart & Andreu Mas-Colell, 2013. "Stochastic Uncoupled Dynamics And Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 8, pages 165-189, World Scientific Publishing Co. Pte. Ltd..
    10. Demange, Gabrielle & Gale, David, 1985. "The Strategy Structure of Two-sided Matching Markets," Econometrica, Econometric Society, vol. 53(4), pages 873-888, July.
    11. Sawa, Ryoji, 2014. "Coalitional stochastic stability in games, networks and markets," Games and Economic Behavior, Elsevier, vol. 88(C), pages 90-111.
    12. M. L. Balinski, 1965. "Integer Programming: Methods, Uses, Computations," Management Science, INFORMS, vol. 12(3), pages 253-313, November.
    13. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    14. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    15. Rochford, Sharon C., 1984. "Symmetrically pairwise-bargained allocations in an assignment market," Journal of Economic Theory, Elsevier, vol. 34(2), pages 262-281, December.
    16. Peter Biro & Matthijs Bomhoff & Walter Kern & Petr A. Golovach & Daniel Paulusma, 2012. "Solutions for the Stable Roommates Problem with Payments," CERS-IE WORKING PAPERS 1211, Institute of Economics, Centre for Economic and Regional Studies.
    17. Iñarra, E. & Larrea, C. & Molis, E., 2013. "Absorbing sets in roommate problems," Games and Economic Behavior, Elsevier, vol. 81(C), pages 165-178.
    18. Selten, Reinhard & Stoecker, Rolf, 1986. "End behavior in sequences of finite Prisoner's Dilemma supergames A learning theory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 47-70, March.
    19. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    20. Diamantoudi, Effrosyni & Miyagawa, Eiichi & Xue, Licun, 2004. "Random paths to stability in the roommate problem," Games and Economic Behavior, Elsevier, vol. 48(1), pages 18-28, July.
    21. , P. & , Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    22. Francesc Llerena & Marina Nunez, 2011. "A geometric characterization of the nucleolus of the assignment game," Economics Bulletin, AccessEcon, vol. 31(4), pages 3275-3285.
    23. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    24. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    25. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
    26. Bo Chen & Satoru Fujishige & Zaifu Yang, 2010. "Decentralized Market Processes to Stable Job Matchings with Competitive Salaries," KIER Working Papers 749, Kyoto University, Institute of Economic Research.
    27. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    28. Murali Agastya, 1997. "Adaptive Play in Multiplayer Bargaining Situations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(3), pages 411-426.
    29. Rozen, Kareen, 2013. "Conflict leads to cooperation in demand bargaining," Journal of Economic Behavior & Organization, Elsevier, vol. 87(C), pages 35-42.
    30. Demange, Gabrielle & Gale, David & Sotomayor, Marilda, 1986. "Multi-Item Auctions," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 863-872, August.
    31. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    32. Solymosi, Tamas & Raghavan, Tirukkannamangai E S, 1994. "An Algorithm for Finding the Nucleolus of Asignment Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(2), pages 119-143.
    33. Theo S. H. Driessen, 1998. "A note on the inclusion of the kernel in the core of the bilateral assignment game," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(2), pages 301-303.
    34. Roth, Alvin E & Vande Vate, John H, 1990. "Random Paths to Stability in Two-Sided Matching," Econometrica, Econometric Society, vol. 58(6), pages 1475-1480, November.
    35. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    36. Sotomayor, Marilda, 2003. "Some further remark on the core structure of the assignment game," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 261-265, December.
    37. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
    38. Bettina Klaus & Frédéric Payot, 2013. "Paths to Stability in the Assignment Problem," Cahiers de Recherches Economiques du Département d'économie 13.14, Université de Lausanne, Faculté des HEC, Département d’économie.
    39. Kelso, Alexander S, Jr & Crawford, Vincent P, 1982. "Job Matching, Coalition Formation, and Gross Substitutes," Econometrica, Econometric Society, vol. 50(6), pages 1483-1504, November.
    40. Arnold, Tone & Schwalbe, Ulrich, 2002. "Dynamic coalition formation and the core," Journal of Economic Behavior & Organization, Elsevier, vol. 49(3), pages 363-380, November.
    41. Newton, Jonathan, 2012. "Recontracting and stochastic stability in cooperative games," Journal of Economic Theory, Elsevier, vol. 147(1), pages 364-381.
    42. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    43. Fuhito Kojima & M. Ünver, 2008. "Random paths to pairwise stability in many-to-many matching problems: a study on market equilibration," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 473-488, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nax, Heinrich H. & Pradelski, Bary S. R., 2015. "Evolutionary dynamics and equitable core selection in assignment games," LSE Research Online Documents on Economics 65428, London School of Economics and Political Science, LSE Library.
    2. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    3. Heinrich H. Nax & Bary S. R. Pradelski, 2016. "Core Stability and Core Selection in a Decentralized Labor Matching Market," Games, MDPI, vol. 7(2), pages 1-16, March.
    4. Klaus, Bettina & Newton, Jonathan, 2016. "Stochastic stability in assignment problems," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 62-74.
    5. Bary S.R. Pradelski, 2014. "Evolutionary Dynamics and Fast Convergence in the Assignment Game," Economics Series Working Papers 700, University of Oxford, Department of Economics.
    6. Heinrich H. Nax & Bary S. R. Pradelski & H. Peyton Young, 2013. "The Evolution of Core Stability in Decentralized Matching Markets," Working Papers 2013.50, Fondazione Eni Enrico Mattei.
    7. Newton, Jonathan & Sawa, Ryoji, 2015. "A one-shot deviation principle for stability in matching problems," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1-27.
    8. Sawa, Ryoji, 2019. "Stochastic stability under logit choice in coalitional bargaining problems," Games and Economic Behavior, Elsevier, vol. 113(C), pages 633-650.
    9. Heinrich H. Nax & Bary S.R. Pradelski, 2012. "Evolutionary dynamics and equitable core selection in assignment games," Economics Series Working Papers 607, University of Oxford, Department of Economics.
    10. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 195-208.
    11. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," LSE Research Online Documents on Economics 65422, London School of Economics and Political Science, LSE Library.
    12. Nax, Heinrich H., 2015. "Equity dynamics in bargaining without information exchange," LSE Research Online Documents on Economics 65426, London School of Economics and Political Science, LSE Library.
    13. Heinrich Nax, 2015. "Equity dynamics in bargaining without information exchange," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 1011-1026, November.
    14. Bettina Klaus & Frédéric Payot, 2013. "Paths to Stability in the Assignment Problem," Cahiers de Recherches Economiques du Département d'économie 13.14, Université de Lausanne, Faculté des HEC, Département d’économie.
    15. Sawa, Ryoji, 2021. "A prospect theory Nash bargaining solution and its stochastic stability," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 692-711.
    16. Satoru Fujishige & Zaifu Yang, 2017. "On a spontaneous decentralized market process," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 2(1), pages 1-37, December.
    17. Maria Montero & Alex Possajennikov, 2021. "An Adaptive Model of Demand Adjustment in Weighted Majority Games," Games, MDPI, vol. 13(1), pages 1-17, December.
    18. Hwang, Sung-Ha & Lim, Wooyoung & Neary, Philip & Newton, Jonathan, 2018. "Conventional contracts, intentional behavior and logit choice: Equality without symmetry," Games and Economic Behavior, Elsevier, vol. 110(C), pages 273-294.
    19. Klaus, Bettina & Klijn, Flip & Walzl, Markus, 2010. "Stochastic stability for roommate markets," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2218-2240, November.
    20. Khan, Abhimanyu, 2022. "Expected utility versus cumulative prospect theory in an evolutionary model of bargaining," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).

    More about this item

    Keywords

    Assignment games; Cooperative games; Core; Equity; Evolutionary game theory; Learning; Matching markets; Stochastic stability; C71; C73; C78; D83;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:44:y:2015:i:4:p:903-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.