IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v75y2012i2p882-897.html
   My bibliography  Save this article

Learning efficient Nash equilibria in distributed systems

Author

Listed:
  • Pradelski, Bary S.R.
  • Young, H. Peyton

Abstract

An individualʼs learning rule is completely uncoupled if it does not depend directly on the actions or payoffs of anyone else. We propose a variant of log linear learning that is completely uncoupled and that selects an efficient (welfare-maximizing) pure Nash equilibrium in all generic n-person games that possess at least one pure Nash equilibrium. In games that do not have such an equilibrium, there is a simple formula that expresses the long-run probability of the various disequilibrium states in terms of two factors: (i) the sum of payoffs over all agents, and (ii) the maximum payoff gain that results from a unilateral deviation by some agent. This welfare/stability trade-off criterion provides a novel framework for analyzing the selection of disequilibrium as well as equilibrium states in n-person games.

Suggested Citation

  • Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
  • Handle: RePEc:eee:gamebe:v:75:y:2012:i:2:p:882-897
    DOI: 10.1016/j.geb.2012.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825612000383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2012.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blume Lawrence E., 1995. "The Statistical Mechanics of Best-Response Strategy Revision," Games and Economic Behavior, Elsevier, vol. 11(2), pages 111-145, November.
    2. Karandikar, Rajeeva & Mookherjee, Dilip & Ray, Debraj & Vega-Redondo, Fernando, 1998. "Evolving Aspirations and Cooperation," Journal of Economic Theory, Elsevier, vol. 80(2), pages 292-331, June.
    3. Yakov Babichenko, 2010. "How Long to Pareto Efficiency?," Discussion Paper Series dp562, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. Itai Arieli & Yakov Babichenko, 2011. "Average Testing and the Efficient Boundary," Discussion Paper Series dp567, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. William H. Sandholm, 2002. "Evolutionary Implementation and Congestion Pricing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 667-689.
    6. Sergiu Hart & Andreu Mas-Colell, 2013. "Stochastic Uncoupled Dynamics And Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 8, pages 165-189, World Scientific Publishing Co. Pte. Ltd..
    7. Foster, Dean P. & Young, H. Peyton, 2003. "Learning, hypothesis testing, and Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 45(1), pages 73-96, October.
    8. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    9. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    10. H Peyton Young & Jason R. Marden and Lucy Y. Pao, 2011. "Achieving Pareto Optimality Through Distributed Learning," Economics Series Working Papers 557, University of Oxford, Department of Economics.
    11. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    12. Blume, Lawrence E., 2003. "How noise matters," Games and Economic Behavior, Elsevier, vol. 44(2), pages 251-271, August.
    13. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    14. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    15. , P. & , Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    16. Yakov Babichenko, 2010. "Completely Uncoupled Dynamics and Nash Equilibria," Discussion Paper Series dp529, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    17. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    3. Lahkar, Ratul, 2017. "Equilibrium selection in the stag hunt game under generalized reinforcement learning," Journal of Economic Behavior & Organization, Elsevier, vol. 138(C), pages 63-68.
    4. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 195-208.
    5. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," LSE Research Online Documents on Economics 65422, London School of Economics and Political Science, LSE Library.
    6. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    7. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    8. Babichenko, Yakov, 2012. "Completely uncoupled dynamics and Nash equilibria," Games and Economic Behavior, Elsevier, vol. 76(1), pages 1-14.
    9. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    10. Juan I Block & Drew Fudenberg & David K Levine, 2017. "Learning Dynamics Based on Social Comparisons," Levine's Working Paper Archive 786969000000001375, David K. Levine.
    11. Itai Arieli & H Peyton Young, 2011. "Stochastic Learning Dynamics and Speed of Convergence in Population Games," Economics Series Working Papers 570, University of Oxford, Department of Economics.
    12. Nax, Heinrich H., 2015. "Equity dynamics in bargaining without information exchange," LSE Research Online Documents on Economics 65426, London School of Economics and Political Science, LSE Library.
    13. Block, Juan I. & Fudenberg, Drew & Levine, David K., 2019. "Learning dynamics with social comparisons and limited memory," Theoretical Economics, Econometric Society, vol. 14(1), January.
    14. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    15. Heinrich Nax, 2015. "Equity dynamics in bargaining without information exchange," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 1011-1026, November.
    16. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    17. Michael Kosfeld, 2002. "Stochastic strategy adjustment in coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 321-339.
    18. H Peyton Young & Jason R. Marden and Lucy Y. Pao, 2011. "Achieving Pareto Optimality Through Distributed Learning," Economics Series Working Papers 557, University of Oxford, Department of Economics.
    19. Kreindler, Gabriel E. & Young, H. Peyton, 2013. "Fast convergence in evolutionary equilibrium selection," Games and Economic Behavior, Elsevier, vol. 80(C), pages 39-67.
    20. Ennio Bilancini & Leonardo Boncinelli, 2020. "The evolution of conventions under condition-dependent mistakes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 497-521, March.

    More about this item

    Keywords

    Stochastic stability; Completely uncoupled learning; Equilibrium selection; Distributed control;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:75:y:2012:i:2:p:882-897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.