IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v82y2013icp66-90.html
   My bibliography  Save this article

Dynamics in near-potential games

Author

Listed:
  • Candogan, Ozan
  • Ozdaglar, Asuman
  • Parrilo, Pablo A.

Abstract

We consider discrete-time learning dynamics in finite strategic form games, and show that games that are close to a potential game inherit many of the dynamical properties of potential games. We first study the evolution of the sequence of pure strategy profiles under better/best response dynamics. We show that this sequence converges to a (pure) approximate equilibrium set whose size is a function of the “distance” to a given nearby potential game. We then focus on logit response dynamics, and provide a characterization of the limiting outcome in terms of the distance of the game to a given potential game and the corresponding potential function. Finally, we turn attention to fictitious play, and establish that in near-potential games the sequence of empirical frequencies of player actions converges to a neighborhood of (mixed) equilibria, where the size of the neighborhood increases according to the distance to the set of potential games.

Suggested Citation

  • Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
  • Handle: RePEc:eee:gamebe:v:82:y:2013:i:c:p:66-90
    DOI: 10.1016/j.geb.2013.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825613000948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2013.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. , & , & ,, 2008. "Monotone methods for equilibrium selection under perfect foresight dynamics," Theoretical Economics, Econometric Society, vol. 3(2), June.
    3. Jordan J. S., 1993. "Three Problems in Learning Mixed-Strategy Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 368-386, July.
    4. Okada, Daijiro & Tercieux, Olivier, 2012. "Log-linear dynamics and local potential," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1140-1164.
    5. Morris, Stephen & Ui, Takashi, 2005. "Generalized potentials and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 124(1), pages 45-78, September.
    6. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    7. Dubey, Pradeep & Haimanko, Ori & Zapechelnyuk, Andriy, 2006. "Strategic complements and substitutes, and potential games," Games and Economic Behavior, Elsevier, vol. 54(1), pages 77-94, January.
    8. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    9. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    10. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181.
    11. Voorneveld, Mark, 2000. "Best-response potential games," Economics Letters, Elsevier, vol. 66(3), pages 289-295, March.
    12. Hiroshi Uno, 2007. "Nested Potential Games," Economics Bulletin, AccessEcon, vol. 3(19), pages 1-8.
    13. repec:ebl:ecbull:v:3:y:2007:i:19:p:1-8 is not listed on IDEAS
    14. Morris, Stephen & Ui, Takashi, 2004. "Best response equivalence," Games and Economic Behavior, Elsevier, vol. 49(2), pages 260-287, November.
    15. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    16. Anantharam, V. & Tsoucas, P., 1989. "A proof of the Markov chain tree theorem," Statistics & Probability Letters, Elsevier, vol. 8(2), pages 189-192, June.
    17. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, April.
    18. Michel Benaim & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions II: Applications," Levine's Bibliography 784828000000000098, UCLA Department of Economics.
    19. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions; Part II: Applications," Working Papers hal-00242974, HAL.
    20. Vijay Krishna & Tomas Sjöström, 1998. "On the Convergence of Fictitious Play," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 479-511, May.
    21. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    22. Alós-Ferrer, Carlos & Netzer, Nick, 2010. "The logit-response dynamics," Games and Economic Behavior, Elsevier, vol. 68(2), pages 413-427, March.
    23. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    24. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    25. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Aixin & Li, Haitao & Wang, Lin, 2024. "Exploring multi-potential games in strategic form: A graph theoretic approach," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    2. Joseph Abdou & Nikolaos Pnevmatikos & Marco Scarsini & Xavier Venel, 2022. "Decomposition of Games: Some Strategic Considerations," Mathematics of Operations Research, INFORMS, vol. 47(1), pages 176-208, February.
    3. Mimun, Hlafo Alfie & Quattropani, Matteo & Scarsini, Marco, 2024. "Best-response dynamics in two-person random games with correlated payoffs," Games and Economic Behavior, Elsevier, vol. 145(C), pages 239-262.
    4. Carlos Alós-Ferrer & Nick Netzer, 2015. "Robust stochastic stability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 31-57, January.
    5. Hódsági, Kristóf & Szabó, György, 2019. "Bursts in three-strategy evolutionary ordinal potential games on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1379-1387.
    6. Philip N. Brown & Joshua H. Seaton & Jason R. Marden, 2023. "Robust Networked Multiagent Optimization: Designing Agents to Repair Their Own Utility Functions," Dynamic Games and Applications, Springer, vol. 13(1), pages 187-207, March.
    7. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    8. Mantas Radzvilas & Francesco De Pretis & William Peden & Daniele Tortoli & Barbara Osimani, 2023. "Incentives for Research Effort: An Evolutionary Model of Publication Markets with Double-Blind and Open Review," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1433-1476, April.
    9. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    10. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
    11. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    12. Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    13. Boyuan Wei & Geert Deconinck, 2019. "Distributed Optimization in Low Voltage Distribution Networks via Broadcast Signals †," Energies, MDPI, vol. 13(1), pages 1-18, December.
    14. Su-Jin Lee & Young-Jin Park & Han-Lim Choi, 2018. "Efficient sensor network planning based on approximate potential games," International Journal of Distributed Sensor Networks, , vol. 14(6), pages 15501477187, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    2. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    3. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    4. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    5. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    6. van Strien, Sebastian & Sparrow, Colin, 2011. "Fictitious play in 3x3 games: Chaos and dithering behaviour," Games and Economic Behavior, Elsevier, vol. 73(1), pages 262-286, September.
    7. Berger, Ulrich, 2007. "Two more classes of games with the continuous-time fictitious play property," Games and Economic Behavior, Elsevier, vol. 60(2), pages 247-261, August.
    8. repec:ebl:ecbull:v:3:y:2007:i:19:p:1-8 is not listed on IDEAS
    9. Uno, Hiroshi, 2011. "Strategic complementarities and nested potential games," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 728-732.
    10. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    11. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    12. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    13. Alós-Ferrer, Carlos & Netzer, Nick, 2010. "The logit-response dynamics," Games and Economic Behavior, Elsevier, vol. 68(2), pages 413-427, March.
    14. Staudigl, Mathias, 2012. "Stochastic stability in asymmetric binary choice coordination games," Games and Economic Behavior, Elsevier, vol. 75(1), pages 372-401.
    15. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    16. Oyama, Daisuke & Tercieux, Olivier, 2009. "Iterated potential and robustness of equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1726-1769, July.
    17. Sung-Ha Hwang & Jonathan Newton, 2017. "Payoff-dependent dynamics and coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 589-604, October.
    18. Oyama, Daisuke & Takahashi, Satoru, 2015. "Contagion and uninvadability in local interaction games: The bilingual game and general supermodular games," Journal of Economic Theory, Elsevier, vol. 157(C), pages 100-127.
    19. Swenson, Brian & Murray, Ryan & Kar, Soummya, 2020. "Regular potential games," Games and Economic Behavior, Elsevier, vol. 124(C), pages 432-453.
    20. Okada, Daijiro & Tercieux, Olivier, 2012. "Log-linear dynamics and local potential," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1140-1164.
    21. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.

    More about this item

    Keywords

    Dynamics in games; Near-potential games; Best response dynamics; Logit response dynamics; Fictitious play;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:82:y:2013:i:c:p:66-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.