IDEAS home Printed from https://ideas.repec.org/p/cla/levrem/122247000000000471.html
   My bibliography  Save this paper

Adaptive Heuristics

Author

Listed:
  • Sergiu Hart

Abstract

We exhibit a large class of simple rules of behavior, which we call adaptive heuristics, and show that they generate rational behavior in the long run. These adaptive heuristics are based on natural regret measures, and may be viewed as a bridge between rational and behavioral viewpoints. Taken together, the results presented here establish a solid connection between the dynamic approach of adaptive heuristics and the static approach of correlated equilibria.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sergiu Hart, 2004. "Adaptive Heuristics," Levine's Bibliography 122247000000000471, UCLA Department of Economics.
  • Handle: RePEc:cla:levrem:122247000000000471
    as

    Download full text from publisher

    File URL: http://www.ma.huji.ac.il/~hart/papers/heurist.pdf?
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    2. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    3. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    2. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    3. Lars P. Metzger, 2018. "Evolution and correlated equilibrium," Journal of Evolutionary Economics, Springer, vol. 28(2), pages 333-346, April.
    4. Chernomaz, K. & Goertz, J.M.M., 2023. "(A)symmetric equilibria and adaptive learning dynamics in small-committee voting," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    5. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    6. Holly P. Borowski & Jason R. Marden & Jeff S. Shamma, 2019. "Learning to Play Efficient Coarse Correlated Equilibria," Dynamic Games and Applications, Springer, vol. 9(1), pages 24-46, March.
    7. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.
    8. Stoltz, Gilles & Lugosi, Gabor, 2007. "Learning correlated equilibria in games with compact sets of strategies," Games and Economic Behavior, Elsevier, vol. 59(1), pages 187-208, April.
    9. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    10. Sergiu Hart & Andreu Mas-Colell, 2013. "Stochastic Uncoupled Dynamics And Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 8, pages 165-189, World Scientific Publishing Co. Pte. Ltd..
    11. John Geanakoplos, 1993. "Common Knowledge," Cowles Foundation Discussion Papers 1062, Cowles Foundation for Research in Economics, Yale University.
    12. Noah Gans & George Knox & Rachel Croson, 2007. "Simple Models of Discrete Choice and Their Performance in Bandit Experiments," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 383-408, December.
    13. Terracol, Antoine & Vaksmann, Jonathan, 2009. "Dumbing down rational players: Learning and teaching in an experimental game," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 54-71, May.
    14. Antonio Cabrales & Rosemarie Nagel & Roc Armenter, 2007. "Equilibrium selection through incomplete information in coordination games: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 10(3), pages 221-234, September.
    15. Iftekhar, M. S. & Tisdell, J. G., 2018. "Learning in repeated multiple unit combinatorial auctions: An experimental study," Working Papers 267301, University of Western Australia, School of Agricultural and Resource Economics.
    16. Astrid Dannenberg & Carlo Gallier, 2020. "The choice of institutions to solve cooperation problems: a survey of experimental research," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 716-749, September.
    17. Fukuda, Satoshi, 2024. "The existence of universal qualitative belief spaces," Journal of Economic Theory, Elsevier, vol. 216(C).
    18. Arfi, Badredine, 2007. "Quantum social game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 794-820.
    19. Georgios Piliouras & Ryann Sim & Stratis Skoulakis, 2021. "Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update," Papers 2111.14737, arXiv.org, revised Jun 2022.
    20. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.

    More about this item

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C79 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levrem:122247000000000471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.