IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v91y2018i3d10.1007_s11069-018-3180-8.html
   My bibliography  Save this article

Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies

Author

Listed:
  • Parisa Paymard

    (Islamic Azad University – Mashhad Branch)

  • Mohammad Bannayan

    (Ferdowsi University of Mashhad)

  • Reza Sadrabadi Haghighi

    (Islamic Azad University – Mashhad Branch)

Abstract

Climate change adversely impacts crop production and imposes a wide range of constraints on agricultural systems especially in water-limited environments. Management strategies to enhance adaptation capacity are needed to mitigate climate change effects. The objective of this study was to investigate the potential of changing planting dates and planting densities as adaptation strategies to climate change for irrigated and rainfed wheat for possible enhancement of crop yield, harvest index and water use efficiency at three locations in northeast of Iran (Mashhad, Sabzevar and Torbat-h). For this purpose, the outputs of five global climate models under RCP-4.5 and RCP-8.5 emission scenarios during three time periods (i.e., the 2020, 2050 and 2080) downscaled by MarkSimGCM were used to run the CSM-CERES-Wheat (v4.6) model. The results indicated that crop production will be reduced as affected by climate change based on prevailing and two other planting dates and planting densities in the future climate change, under all scenarios and years. In general, later planting dates with planting density of 400 plants m−2 caused higher production which leads to less yield reduction by about 8, 11 and 10% for irrigated wheat and 27, 21 and 26% for rainfed wheat on average across all periods and scenarios compared to current management practices in Mashhad, Sabzevar and Torbat-h, respectively. Based on this study, it seems that changing planting dates and densities can be beneficial for adaptation of wheat to climate change.

Suggested Citation

  • Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
  • Handle: RePEc:spr:nathaz:v:91:y:2018:i:3:d:10.1007_s11069-018-3180-8
    DOI: 10.1007/s11069-018-3180-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3180-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3180-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Suxia & Mo, Xingguo & Lin, Zhonghui & Xu, Yueqing & Ji, Jinjun & Wen, Gang & Richey, Jeff, 2010. "Crop yield responses to climate change in the Huang-Huai-Hai Plain of China," Agricultural Water Management, Elsevier, vol. 97(8), pages 1195-1209, August.
    2. Oweis, Theib & Hachum, Ahmed & Pala, Mustafa, 2004. "Water use efficiency of winter-sown chickpea under supplemental irrigation in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 66(2), pages 163-179, April.
    3. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    4. Jones, Peter G. & Thornton, Philip K., 2013. "Generating downscaled weather data from a suite of climate models for agricultural modelling applications," Agricultural Systems, Elsevier, vol. 114(C), pages 1-5.
    5. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    6. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    7. Jones, Peter G. & Thornton, Philip K., 2015. "Representative soil profiles for the Harmonized World Soil Database at different spatial resolutions for agricultural modelling applications," Agricultural Systems, Elsevier, vol. 139(C), pages 93-99.
    8. Ferreira, A.M & Abreu, F.G, 2001. "Description of development, light interception and growth of sunflower at two sowing dates and two densities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(4), pages 369-384.
    9. E. Eyshi Rezaei & T. Gaiser & S. Siebert & F. Ewert, 2015. "Adaptation of crop production to climate change by crop substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1155-1174, October.
    10. Guo, Ruiping & Lin, Zhonghui & Mo, Xingguo & Yang, Chunlin, 2010. "Responses of crop yield and water use efficiency to climate change in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1185-1194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Lachutta & Krzysztof Józef Jankowski, 2024. "An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland," Agriculture, MDPI, vol. 14(3), pages 1-23, March.
    2. Yujie Liu & Qiaomin Chen & Qinghua Tan, 2019. "Responses of wheat yields and water use efficiency to climate change and nitrogen fertilization in the North China plain," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1231-1242, December.
    3. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.
    4. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    5. Shah, Hassnain & Siderius, Christian & Hellegers, Petra, 2021. "Limitations to adjusting growing periods in different agroecological zones of Pakistan," Agricultural Systems, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    2. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    3. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    4. Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
    6. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    7. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    9. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    10. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    11. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    12. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    13. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    15. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    16. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    17. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    18. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    20. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:91:y:2018:i:3:d:10.1007_s11069-018-3180-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.